Rapid elimination of noise in 3D laser scanning point cloud data

Author(s):  
Wang Weijie ◽  
Xue Hera ◽  
Zhou Yanqing ◽  
Yang Tong
2013 ◽  
Vol 405-408 ◽  
pp. 3032-3036
Author(s):  
Yi Bo Sun ◽  
Xin Qi Zheng ◽  
Zong Ren Jia ◽  
Gang Ai

At present, most of the commercial 3D laser scanning measurement systems do work for a large area and a big scene, but few shows their advantage in the small area or small scene. In order to solve this shortage, we design a light-small mobile 3D laser scanning system, which integrates GPS, INS, laser scanner and digital camera and other sensors, to generate the Point Cloud data of the target through data filtering and fusion. This system can be mounted on airborne or terrestrial small mobile platform and enables to achieve the goal of getting Point Cloud data rapidly and reconstructing the real 3D model. Compared to the existing mobile 3D laser scanning system, the system we designed has high precision but lower cost, smaller hardware and more flexible.


2014 ◽  
Vol 709 ◽  
pp. 465-468
Author(s):  
Xian Quan Han ◽  
Fei Qin ◽  
Zhen Zhang ◽  
Shang Yi Yang

This paper examines the basic flow and processing of the terrestrial 3D Laser scanning technology in the tunnel survey. The use of the method is discussed, point cloud data which have been registered, cropped can be constructed to a complete tunnel surface model. An example is given to extract the tunnel section and calculate the excavation of the tunnel. Result of the experimental application of this analysis procedure is given to illustrate the proposed technique can be flexibly used according to the need based on its 3D model. The feasibility and advantages of terrestrial 3D laser scanning technology in tunnel survey is also considered.


2017 ◽  
Vol 865 ◽  
pp. 595-598
Author(s):  
Hui Zeng Yin ◽  
Xin Wei Yang ◽  
Rui Lan Tian ◽  
Xiu Zhi Sui

Pressure vessel is widely used in the industrial engineering. Many materials in pressure vessel are inflammable and explosive dangerous goods. If the accident happens, great harm will be done to the lives and properties of people. Some common methods for studying pressure vessel have obvious drawbacks. 3D laser scanning method uses non-contact measuring method and can directly obtain the point cloud data of the mass surface which can be used to reconstruct any convex surface. According to the advantages of 3D laser scanning method, in this paper, it is introduced to measure the dimensions of flanges in pressure vessel. The experimental results obtained have little errors, which certify that 3D laser scanning method can be used to measure the dimensions of flanges and further study the characteristics of pressure vessel.


2012 ◽  
Vol 204-208 ◽  
pp. 618-621
Author(s):  
Bao Xing Zhou ◽  
Jian Ping Yue ◽  
Jin Li

Terrestrial laser scanner (TLS) can provide the measurement of a large number of physical points distributed on the observed surface. A fast earthwork calculating method is proposed based on the redundant number of acquired points, which leads to a very accurate and high resolution reconstruction of the observed surfaces. This paper describes the three main steps of the method, namely the acquisition of the earthwork data based on TLS, the pre-processing of point cloud data, the earthwork calculation and accuracy evaluation based on point cloud data. Furthermore, it illustrates the performance of the proposed method with a validation experiment.


2020 ◽  
Vol 10 (23) ◽  
pp. 8680
Author(s):  
Huimin Li ◽  
Chengyi Zhang ◽  
Siyuan Song ◽  
Sevilay Demirkesen ◽  
Ruidong Chang

Quality control is essential to a successful modular construction project and should be enhanced throughout the project from design to construction and installation. The current methods for analyzing the assembly quality of a removable floodwall heavily rely on manual inspection and contact-type measurements, which are time-consuming and costly. This study presents a systematic and practical approach to improve quality control of the prefabricated modular construction projects by integrating building information modeling (BIM) with three-dimensional (3D) laser scanning technology. The study starts with a thorough literature review of current quality control methods in modular construction. Firstly, the critical quality control procedure for the modular construction structure and components should be identified. Secondly, the dimensions of the structure and components in a BIM model is considered as quality tolerance control benchmarking. Thirdly, the point cloud data is captured with 3D laser scanning, which is used to create the as-built model for the constructed structure. Fourthly, data analysis and field validation are carried out by matching the point cloud data with the as-built model and the BIM model. Finally, the study employs the data of a removable floodwall project to validate the level of technical feasibility and accuracy of the presented methods. This method improved the efficiency and accuracy of modular construction quality control. It established a preliminary foundation for using BIM and laser scanning to conduct quality control in removable floodwall installation. The results indicated that the proposed integration of BIM and 3D laser scanning has great potential to improve the quality control of a modular construction project.


2020 ◽  
Vol 213 ◽  
pp. 03025
Author(s):  
Yan Wang ◽  
Tingting Zhang ◽  
Jingyi Wang

Three-dimensional point cloud data is a new form of three-dimensional collection, which not only contains the geometric topology information of the object, but also has high simplicity and flexibility. In this paper, the air-ground multi-source data fusion technology is used to study the fine reconstruction of the 3D scene: based on the 3D laser scanning laser point cloud, the 3D spatial information of the ground visible objects is obtained, and the orthophoto obtained by the drone aerial photography is assisted, Obtain the three-dimensional space information of the top of the ground feature, and the ground three-dimensional laser scanner can quickly obtain the three-dimensional surface information of the building facade, ground, and trees. Due to the complex structure of the building and the occlusion of spatial objects, sub-station scanning is required when acquiring point cloud data. This article uses the Sino-German Energy Conservation Center Building of Shenyang Jianzhu University as the research area, using drone tilt photography technology and ground lidar technology to integrate. During the experiment, the field industry adopted the UAV image acquisition strategy of “automatic shooting of regular routes, supplemented by manual shooting of areas of interest”; in the field industry, the method of “manual coarse registration and ICP algorithm fine registration” The example results show that the ground 3D laser point cloud air-ground image fusion 3D modeling effect proposed in this paper is better and the quality is greatly improved, which makes up for the ground 3D laser scanning. In point cloud modeling, a large number of holes are insufficient due to occlusion and missing top information.


2020 ◽  
Vol 57 (20) ◽  
pp. 202801
Author(s):  
龙丽娟 Long Lijuan ◽  
夏永华 Xia Yonghua ◽  
黄德 Huang De

2014 ◽  
Vol 651-653 ◽  
pp. 2335-2338
Author(s):  
Shi Gang Wang ◽  
Yong Yan ◽  
Feng Juan Wang

The 3D laser scanning technology is a hot spot in developed measuring in recent years. In the surface reconstruction of reverse engineering, the 3D laser scanning point cloud data is too large, and is not conducive to the computation, storage and surface reconstruction. After understanding the research status of the point cloud data processing streamline method at home and abroad, and through the analysis of minimum distance algorithm and the angle-chord height combined code method applicable to engineering characteristics, at the same time, the combination algorithm, which is based on the minimum distance algorithm and the angle-chord height combined code method, is proposed to simplify the point cloud data. The scanning point cloud is simplified by using matlab line by line.


2012 ◽  
Vol 182-183 ◽  
pp. 1821-1825 ◽  
Author(s):  
Cheng Hui Wan ◽  
Xiao Jun Cheng

This paper applies a Cut-and-Sew algorithm extracting feature line of the mountain based on laser 3D scanning. The mountain is cut at the direction of contour lines. Point cloud data of the cut surface fits curve that project the same plane. Feature points find the curve corresponding to match. Through the connection of feature points, then returning the 3D space to achieve feature line, and the establishment of the formation of the triangular feature line is reconstructed on the mountain.


Sign in / Sign up

Export Citation Format

Share Document