2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Chunxia Yin ◽  
Jian Liu ◽  
Shunfu Jin

In recent years, the energy consumption of cloud data centers has continued to increase. A large number of servers run at a low utilization rate, which results in a great waste of power. To save more energy in a cloud data center, we propose an energy-efficient task-scheduling mechanism with switching on/sleep mode of servers in the virtualized cloud data center. The key idea is that when the number of idle VMs reaches a specified threshold, the server with the most idle VMs will be switched to sleep mode after migrating all the running tasks to other servers. From the perspective of the total number of tasks and the number of servers in sleep mode in the system, we establish a two-dimensional Markov chain to analyse the proposed energy-efficient mechanism. By using the method of the matrix-geometric solution, we mathematically estimate the energy consumption and the response performance. Both numerical and simulated experiments show that our proposed energy-efficient mechanism can effectively reduce the energy consumption and guarantee the response performance. Finally, by constructing a cost function, the number of VMs hosted on each server is optimized.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Shanchen Pang ◽  
Weiguang Zhang ◽  
Tongmao Ma ◽  
Qian Gao

With the wide deployment of cloud computing data centers, the problems of power consumption have become increasingly prominent. The dynamic energy management problem in pursuit of energy-efficiency in cloud data centers is investigated. Specifically, a dynamic energy management system model for cloud data centers is built, and this system is composed of DVS Management Module, Load Balancing Module, and Task Scheduling Module. According to Task Scheduling Module, the scheduling process is analyzed by Stochastic Petri Net, and a task-oriented resource allocation method (LET-ACO) is proposed, which optimizes the running time of the system and the energy consumption by scheduling tasks. Simulation studies confirm the effectiveness of the proposed system model. And the simulation results also show that, compared to ACO, Min-Min, and RR scheduling strategy, the proposed LET-ACO method can save up to 28%, 31%, and 40% energy consumption while meeting performance constraints.


2015 ◽  
Vol 4 (1) ◽  
pp. 51-60
Author(s):  
Kamyab Khajehei

By using global application environments, cloud computing based data centers growing every day and this exponentially grows definitely effect on our environment. Researchers that have a commitment to their environment and others which was concerned about the electricity bills came up with a solution which called “Green Cloud”. Green cloud data centers based on how consume energy are known as high efficient data centers. In green cloud we try to reduce number of active devices and consume less electricity energy. In green data centers toke an advantage of VM and ability of copying, deleting and moving VMs over the data center and reduce energy consumption. This paper focused on which parts of data centers may change and how researchers found the suitable solution for each component of data centers. Also with all these problems why still the cloud data centers are the best technology for IT businesses.


Author(s):  
A. R. Mohazabiyeh ◽  
K. H. Amirizadeh

With the increasing expansion of cloud data centers and the demand for cloud services, one of the major problems facing these data centers is the “increasing growth in energy consumption ". In this paper, we propose a method to balance the burden of virtual machine resources in order to reduce energy consumption. The proposed technique is based on a four-adaptive threshold model to reduce energy consumption in physical servers and minimize SLA violation in cloud data centers. Based on the proposed technique, hosts will be grouped into five clusters: hosts with low load, hosts with a light load, hosts with a middle load, hosts with high load and finally, hosts with a heavy load. Virtual machines are transferred from the host with high load and heavy load to the hosts with light load. Also, the VMs on low hosts will be migrated to the hosts with middle load, while the host with a light load and hosts with middle load remain unchanged. The values of the thresholds are obtained on the basis of the mathematical modeling approach and the 𝐾-Means Clustering Algorithm is used for clustering of hosts. Experimental results show that applying the proposed technique will improve the load balancing and reduce the number of VM migration and reduce energy consumption.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 550 ◽  
Author(s):  
G Anusha ◽  
P Supraja

Cloud computing is a growing technology now-a-days, which provides various resources to perform complex tasks. These complex tasks can be performed with the help of datacenters. Data centers helps the incoming tasks by providing various resources like CPU, storage, network, bandwidth and memory, which has resulted in the increase of the total number of datacenters in the world. These data centers consume large volume of energy for performing the operations and which leads to high operation costs. Resources are the key cause for the power consumption in data centers along with the air and cooling systems. Energy consumption in data centers is comparative to the resource usage. Excessive amount of energy consumption by datacenters falls out in large power bills. There is a necessity to increase the energy efficiency of such data centers. We have proposed an Energy aware dynamic virtual machine consolidation (EADVMC) model which focuses on pm selection, vm selection, vm placement phases, which results in the reduced energy consumption and the Quality of service (QoS) to a considerable level.


Sign in / Sign up

Export Citation Format

Share Document