Fully Automated Traffic Sign Substitution in Real-World Images for Large-Scale Data Augmentation

Author(s):  
Daniela Horn ◽  
Sebastian Houben
2019 ◽  
Vol 9 (15) ◽  
pp. 3141
Author(s):  
Li Bai ◽  
Mi Hu ◽  
Yunlong Ma ◽  
Min Liu

The last two decades have witnessed an explosive growth of e-commerce applications. Existing online recommendation systems for e-commerce applications, particularly group-buying applications, suffer from scalability and data sparsity problems when confronted with exponentially increasing large-scale data. This leads to a poor recommendation effect of traditional collaborative filtering (CF) methods in group-buying applications. In order to address this challenge, this paper proposes a hybrid two-phase recommendation (HTPR) method which consists of offline preparation and online recommendation, combining clustering and collaborative filtering techniques. The user-item category tendency matrix is constructed after clustering items, and then users are clustered to facilitate personalized recommendation where items are generated by collaborative filtering technology. In addition, a parallelized strategy was developed to optimize the recommendation process. Extensive experiments on a real-world dataset were conducted by comparing HTPR with other three recommendation methods: traditional CF, user-clustering based CF, and item-clustering based CF. The experimental results show that the proposed HTPR method is effective and can improve the accuracy of online recommendation systems for group-buying applications.


2018 ◽  
Vol 13 (2) ◽  
pp. 437-459 ◽  
Author(s):  
Panayiota Touloupou ◽  
Naif Alzahrani ◽  
Peter Neal ◽  
Simon E. F. Spencer ◽  
Trevelyan J. McKinley

2020 ◽  
Author(s):  
Than Le

In this paper, we focus on simple data-driven approach to solve deep learning based on implementing the Mask R-CNN module by analyzing deeper manipulation of datasets. We firstly approach to affine transformation and projective representation to data augmentation analysis in order to increasing large-scale data manually based on the state-of-the-art in views of computer vision. Then we evaluate our method concretely by connection our datasets by visualization data and completely in testing to many methods to understand intelligent data analysis in object detection and segmentation by using more than 5000 image according to many similar objects. As far as, it illustrated efficiency of small applications such as food recognition, grasp and manipulation in robotics<br>


Author(s):  
Randhir Kumar ◽  
Rakesh Tripathi

The future applications of blockchain are expected to serve millions of users. To provide variety of services to the users, using underlying technology has to consider large-scale storage and assessment behind the scene. Most of the current applications of blockchain are working either on simulators or via small blockchain network. However, the storage issue in the real world is unpredictable. To address the issue of large-scale data storage, the authors have introduced the data storage scheme in blockchain (DSSB). The storage model executes behind the blockchain ledger to store large-scale data. In DSSB, they have used hybrid storage model using IPFS and MongoDB(NoSQL) in order to provide efficient storage for large-scale data in blockchain. In this storage model, they have maintained the content-addressed hash of the transactions on blockchain network to ensure provenance. In DSSB, they are storing the original data (large-scale data) into MongoDB and IPFS. The DSSB model not only provides efficient storage of large-scale data but also provides storage size reduction of blockchain ledger.


2020 ◽  
Author(s):  
Than Le

In this paper, we focus on simple data-driven approach to solve deep learning based on implementing the Mask R-CNN module by analyzing deeper manipulation of datasets. We firstly approach to affine transformation and projective representation to data augmentation analysis in order to increasing large-scale data manually based on the state-of-the-art in views of computer vision. Then we evaluate our method concretely by connection our datasets by visualization data and completely in testing to many methods to understand intelligent data analysis in object detection and segmentation by using more than 5000 image according to many similar objects. As far as, it illustrated efficiency of small applications such as food recognition, grasp and manipulation in robotics<br>


2009 ◽  
Vol 28 (11) ◽  
pp. 2737-2740
Author(s):  
Xiao ZHANG ◽  
Shan WANG ◽  
Na LIAN

Sign in / Sign up

Export Citation Format

Share Document