Class Probability-based Visual and Contextual Feature Integration for Image Parsing

Author(s):  
Basim Azam ◽  
Ranju Mandal ◽  
Ligang Zhang ◽  
Brijesh Verma
2010 ◽  
Author(s):  
Wilfried Kunde ◽  
Heiko Reuss ◽  
Carsten Pohl ◽  
Andrea Kiesel

2006 ◽  
Vol 33 (S 1) ◽  
Author(s):  
E. Huberle ◽  
K. Seymour ◽  
C.F. Altmann ◽  
H.O. Karnath

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 617
Author(s):  
Guoqing Bao ◽  
Xiuying Wang ◽  
Ran Xu ◽  
Christina Loh ◽  
Oreoluwa Daniel Adeyinka ◽  
...  

We have developed a platform, termed PathoFusion, which is an integrated system for marking, training, and recognition of pathological features in whole-slide tissue sections. The platform uses a bifocal convolutional neural network (BCNN) which is designed to simultaneously capture both index and contextual feature information from shorter and longer image tiles, respectively. This is analogous to how a microscopist in pathology works, identifying a cancerous morphological feature in the tissue context using first a narrow and then a wider focus, hence bifocal. Adjacent tissue sections obtained from glioblastoma cases were processed for hematoxylin and eosin (H&E) and immunohistochemical (CD276) staining. Image tiles cropped from the digitized images based on markings made by a consultant neuropathologist were used to train the BCNN. PathoFusion demonstrated its ability to recognize malignant neuropathological features autonomously and map immunohistochemical data simultaneously. Our experiments show that PathoFusion achieved areas under the curve (AUCs) of 0.985 ± 0.011 and 0.988 ± 0.001 in patch-level recognition of six typical pathomorphological features and detection of associated immunoreactivity, respectively. On this basis, the system further correlated CD276 immunoreactivity to abnormal tumor vasculature. Corresponding feature distributions and overlaps were visualized by heatmaps, permitting high-resolution qualitative as well as quantitative morphological analyses for entire histological slides. Recognition of more user-defined pathomorphological features can be added to the system and included in future tissue analyses. Integration of PathoFusion with the day-to-day service workflow of a (neuro)pathology department is a goal. The software code for PathoFusion is made publicly available.


2021 ◽  
Vol 13 (5) ◽  
pp. 1042
Author(s):  
Jung-Hyun Yang ◽  
Jung-Moon Yoo ◽  
Yong-Sang Choi

The detection of low stratus and fog (LSF) at dawn remains limited because of their optical features and weak solar radiation. LSF could be better identified by simultaneous observations of two geostationary satellites from different viewing angles. The present study developed an advanced dual-satellite method (DSM) using FY-4A and Himawari-8 for LSF detection at dawn in terms of probability indices. Optimal thresholds for identifying the LSF from the spectral tests in DSM were determined by the comparison with ground observations of fog and clear sky in/around Japan between April to November of 2018. Then the validation of these thresholds was carried out for the same months of 2019. The DSM essentially used two traditional single-satellite tests for daytime such as the 0.65-μm reflectance (R0.65), and the brightness temperature difference between 3.7 μm and 11 μm (BTD3.7-11); in addition to four more tests such as Himawari-8 R0.65 and BTD13.5-8.5, the dual-satellite stereoscopic difference in BTD3.7-11 (ΔBTD3.7-11), and that in the Normalized Difference Snow Index (ΔNDSI). The four were found to show very high skill scores (POD: 0.82 ± 0.04; FAR, 0.10 ± 0.04). The radiative transfer simulation supported optical characteristics of LSF in observations. The LSF probability indices (average POD: 0.83, FAR: 0.10) were constructed by a statistical combination of the four to derive the five-class probability values of LSF occurrence in a grid. The indices provided more details and useful results in LSF spatial distribution, compared to the single satellite observations (i.e., R0.65 and/or BTD3.7-11) of either LSF or no LSF. The present DSM could apply for remote sensing of environmental phenomena if the stereoscopic viewing angle between two satellites is appropriate.


Sign in / Sign up

Export Citation Format

Share Document