scholarly journals Advanced Dual-Satellite Method for Detection of Low Stratus and Fog near Japan at Dawn from FY-4A and Himawari-8

2021 ◽  
Vol 13 (5) ◽  
pp. 1042
Author(s):  
Jung-Hyun Yang ◽  
Jung-Moon Yoo ◽  
Yong-Sang Choi

The detection of low stratus and fog (LSF) at dawn remains limited because of their optical features and weak solar radiation. LSF could be better identified by simultaneous observations of two geostationary satellites from different viewing angles. The present study developed an advanced dual-satellite method (DSM) using FY-4A and Himawari-8 for LSF detection at dawn in terms of probability indices. Optimal thresholds for identifying the LSF from the spectral tests in DSM were determined by the comparison with ground observations of fog and clear sky in/around Japan between April to November of 2018. Then the validation of these thresholds was carried out for the same months of 2019. The DSM essentially used two traditional single-satellite tests for daytime such as the 0.65-μm reflectance (R0.65), and the brightness temperature difference between 3.7 μm and 11 μm (BTD3.7-11); in addition to four more tests such as Himawari-8 R0.65 and BTD13.5-8.5, the dual-satellite stereoscopic difference in BTD3.7-11 (ΔBTD3.7-11), and that in the Normalized Difference Snow Index (ΔNDSI). The four were found to show very high skill scores (POD: 0.82 ± 0.04; FAR, 0.10 ± 0.04). The radiative transfer simulation supported optical characteristics of LSF in observations. The LSF probability indices (average POD: 0.83, FAR: 0.10) were constructed by a statistical combination of the four to derive the five-class probability values of LSF occurrence in a grid. The indices provided more details and useful results in LSF spatial distribution, compared to the single satellite observations (i.e., R0.65 and/or BTD3.7-11) of either LSF or no LSF. The present DSM could apply for remote sensing of environmental phenomena if the stereoscopic viewing angle between two satellites is appropriate.

2016 ◽  
Vol 55 (11) ◽  
pp. 2529-2546 ◽  
Author(s):  
X. Zhuge ◽  
X. Zou

AbstractAssimilation of infrared channel radiances from geostationary imagers requires an algorithm that can separate cloudy radiances from clear-sky ones. An infrared-only cloud mask (CM) algorithm has been developed using the Advanced Himawari Imager (AHI) radiance observations. It consists of a new CM test for optically thin clouds, two modified Advanced Baseline Imager (ABI) CM tests, and seven other ABI CM tests. These 10 CM tests are used to generate composite CMs for AHI data, which are validated by using the Moderate Resolution Imaging Spectroradiometer (MODIS) CMs. It is shown that the probability of correct typing (PCT) of the new CM algorithm over ocean and over land is 89.73% and 90.30%, respectively and that the corresponding leakage rates (LR) are 6.11% and 4.21%, respectively. The new infrared-only CM algorithm achieves a higher PCT and a lower false-alarm rate (FAR) over ocean than does the Clouds from the Advanced Very High Resolution Radiometer (AVHRR) Extended System (CLAVR-x), which uses not only the infrared channels but also visible and near-infrared channels. A slightly higher FAR of 7.92% and LR of 6.18% occurred over land during daytime. This result requires further investigation.


2006 ◽  
Vol 23 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Huai-Min Zhang ◽  
Richard W. Reynolds ◽  
Thomas M. Smith

Abstract A method is presented to evaluate the adequacy of the recent in situ network for climate sea surface temperature (SST) analyses using both in situ and satellite observations. Satellite observations provide superior spatiotemporal coverage, but with biases; in situ data are needed to correct the satellite biases. Recent NOAA/U.S. Navy operational Advanced Very High Resolution Radiometer (AVHRR) satellite SST biases were analyzed to extract typical bias patterns and scales. Occasional biases of 2°C were found during large volcano eruptions and near the end of the satellite instruments’ lifetime. Because future biases could not be predicted, the in situ network was designed to reduce the large biases that have occurred to a required accuracy. Simulations with different buoy density were used to examine their ability to correct the satellite biases and to define the residual bias as a potential satellite bias error (PSBE). The PSBE and buoy density (BD) relationship was found to be nearly exponential, resulting in an optimal BD range of 2–3 per 10° × 10° box for efficient PSBE reduction. A BD of two buoys per 10° × 10° box reduces a 2°C maximum bias to below 0.5°C and reduces a 1°C maximum bias to about 0.3°C. The present in situ SST observing system was evaluated to define an equivalent buoy density (EBD), allowing ships to be used along with buoys according to their random errors. Seasonally averaged monthly EBD maps were computed to determine where additional buoys are needed for future deployments. Additionally, a PSBE was computed from the present EBD to assess the in situ system’s adequacy to remove potential future satellite biases.


2011 ◽  
Vol 28 (9) ◽  
pp. 1104-1116 ◽  
Author(s):  
Eric S. Maddy ◽  
Thomas S. King ◽  
Haibing Sun ◽  
Walter W. Wolf ◽  
Christopher D. Barnet ◽  
...  

Abstract High spatial resolution measurements from the Advanced Very High Resolution Radiometer (AVHRR) on the Meteorological Operation (MetOp)-A satellite that are collocated to the footprints from the Infrared Atmospheric Sounding Interferometer (IASI) on the satellite are exploited to improve and quality control cloud-cleared radiances obtained from the IASI. For a partial set of mostly ocean MetOp-A orbits collected on 3 October 2010 for latitudes between 70°S and 75°N, these cloud-cleared radiances and clear-sky subpixel AVHRR measurements within the IASI footprint agree to better than 0.25-K root-mean-squared difference for AVHRR window channels with almost zero bias. For the same dataset, surface skin temperatures retrieved using the combined AVHRR, IASI, and Advanced Microwave Sounding Unit (AMSU) cloud-clearing algorithm match well with ECMWF model surface skin temperatures over ocean, yielding total uncertainties ≤1.2 K for scenes with up to 97% cloudiness.


2016 ◽  
Author(s):  
Benjamin R. Scarino ◽  
Patrick Minnis ◽  
Thad Chee ◽  
Kristopher M. Bedka ◽  
Christopher R. Yost ◽  
...  

Abstract. Surface skin temperature (Ts) is an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared- (TIR-) method to retrieve Ts over clear-sky land and ocean surfaces from data taken by geostationary-Earth orbit (GEO) satellite and low-Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of Ts over the diurnal cycle in non-polar regions, while polar Ts retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR) can complement the GEO measurements. The combined global coverage of remotely sensed Ts, along with accompanying cloud and surface radiation parameters, produced in near-real time and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-real-time hourly Ts observations can be assimilated in high-temporal resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived Ts, data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing angle. Therefore, Ts validation with established references is essential, as is proper evaluation of Ts sensitivity to atmospheric correction source. This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based Ts product, derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirical means of correcting for the viewing-angle dependency of satellite land surface temperature (LST) is explained and validated. Application of a daytime nadir-normalization model yields improved accuracy and precision of GOES-13 LST relative to independent Moderate-resolution Imaging Spectroradiometer (MYD11_L2) LST and Atmospheric Radiation Measurement Program/NOAA ESRL Surface Radiation network ground stations. These corrections serve as a basis for a means to improve satellite-based LST accuracy, thereby leading to better monitoring and utilization of the data. The immediate availability and broad coverage of these skin temperature observations should prove valuable to modelers and climate researchers looking for improved forecasts and better understanding of the global climate model.


2021 ◽  
Author(s):  
Pia Nielsen-Englyst ◽  
Jacob L. Høyer ◽  
Kristine S. Madsen ◽  
Rasmus T. Tonboe ◽  
Gorm Dybkjær ◽  
...  

Abstract. The Arctic region is responding heavily to climate change, and yet, the air temperature of ice covered areas in the Arctic is heavily under-sampled when it comes to in situ measurements, resulting in large uncertainties in existing weather- and reanalysis products. This paper presents a method for estimating daily mean clear sky 2 meter air temperatures (T2m) in the Arctic from satellite observations of skin temperature, using the Arctic and Antarctic ice Surface Temperatures from thermal Infrared (AASTI) satellite dataset, providing spatially detailed observations of the Arctic. The method is based on a linear regression model, which has been tuned against in situ observations to estimate daily mean T2m based on clear sky satellite ice surface skin temperatures. The daily satellite derived T2m product includes estimated uncertainties and covers clear sky snow and ice surfaces in the Arctic region during the period 2000–2009, provided on a 0.25 degree regular latitude-longitude grid. Comparisons with independent in situ measured T2m show average biases of 0.30 °C and 0.35 °C and average root mean square errors of 3.47 °C and 3.20 °C for land ice and sea ice, respectively. The associated uncertainties are verified to be very realistic for both land ice and sea ice, using in situ observations. The reconstruction provides a much better spatial coverage than the sparse in situ observations of T2m in the Arctic, is independent of numerical weather prediction model input and it therefore provides an important supplement to simulated air temperatures to be used for assimilation or global surface temperature reconstructions. A comparison between in situ T2m versus T2m derived from satellite and ERA-Interim/ERA5 estimates shows that the T2m derived from satellite observations validate similar or better than ERA-Interim/ERA5 in the Arctic.


2020 ◽  
Vol 12 (12) ◽  
pp. 1931
Author(s):  
Guang Zhang ◽  
Yingying Ma

The distribution and trend of clear-sky surface solar radiation (SSR) and the quantitative effects of aerosol and water vapor are investigated in northern China during 2001–2015 using radiation simulations and satellite observations. Clear-sky SSR in northern China is high in summer and low in winter, which is dominated by astronomical factors and strongly modulated by the seasonal variations of radiative effects of aerosol (ARE) and water vapor (WVRE). The larger variation of WVRE than ARE indicates that water vapor plays a more important role in moderating the seasonal variation of clear-sky SSR. Clear-sky SSR shows an overall decreasing trend of –0.12 W/m2 per year, with decrease more strongly than –0.60 W/m2 per year in west-central Shandong and increase (about 0.40 W/m2) in south-central Inner Mongolia. The consistency of spatial distribution and high correlation between clear-sky SSR and ARE trend indicate that the clear-sky SSR trend is mainly determined by aerosol variation. Dust mass concentration decreases about 16% in south-central Inner Mongolia from 2001 to 2015, resulting in the increase in clear-sky SSR. In contrast, sulfate aerosol increases about 92% in west-central Shandong, leading to the decreasing trend of clear-sky SSR.


2013 ◽  
Vol 433-435 ◽  
pp. 1921-1925
Author(s):  
Guang Pan ◽  
Jing Wei

For the buoy being launched in the sea, the cost of great number of experiments is very high. It is difficult to get an overall understanding of the process. Aiming at the problems, the visualization of the entire process was realized. Based on Multigen Creator, the three-dimensional models of submarine, buoy, airbag and sleeves were built. Combined simulation program in Vega Prime, the trajectory of the buoy was simulated. In the process of simulation, the viewing angle of the target could be switched for full range of observations. The interaction between users and the simulation system made the relevant person to conveniently and intuitively observe and assess the status of buoys being operated.


2013 ◽  
Vol 23 (6) ◽  
pp. 25-28 ◽  
Author(s):  
Renata Chadyšienė ◽  
Aloyzas Girgždys

In this article the erythemally weighted UV radiation intensity variations during 2002-2011 were analysed. Also UV radiation intensity and total ozone data in this paper were analysed, because the UV index is directly dependent on the intensity of UV radiation, and most of the UV radiation is absorbed by stratospheric ozone. During 2002-2011 in the course of UV index - the upward trend was observed, and in the total ozone values - the downward trend was observed. During the investigated period in Lithuania the maximum UV index values (very high) on clear sky summer days were determined.


Sign in / Sign up

Export Citation Format

Share Document