Rare earth elements and permanent magnets - A supply chain and technology overview

IVEC 2012 ◽  
2012 ◽  
Author(s):  
Peter C. Dent
Author(s):  
A. Ya. Krasilʼnikov ◽  
A. A. Krasilʼnikov

The article considers the possibility of using a standard method for calculating the shear force of thin, high-coercivity neodymium–iron–boron type permanent magnets in magnetic clutches (couplings). The research results allowed to introduce a correction coefficients in the method of calculating the transmitting torque in magnetic clutches (couplings) with thin magnets. The possibility of 08H22N6T brand steel using for magnetic flux conductors manufacturing in a magnetic couplings.


2019 ◽  
Vol 6 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Martina Orefice ◽  
Amy Van den Bulck ◽  
Bart Blanpain ◽  
Koen Binnemans

AbstractOxidative roasting of Nd–Fe‒B permanent magnets prior to leaching improves the selectivity in the recovery of rare-earth elements over iron. However, the dissolution rate of oxidatively roasted Nd–Fe‒B permanent magnets in acidic solutions is very slow, often longer than 24 h. Upon roasting in air at temperatures above 500 °C, the neodymium metal is not converted to Nd2O3, but rather to the ternary NdFeO3 phase. NdFeO3 is much more difficult to dissolve than Nd2O3. In this work, the formation of NdFeO3 was avoided by roasting Nd–Fe‒B permanent magnet production scrap in argon atmosphere, having an oxygen content of $$ p_{{{\text{O}}_{2} }} \, \le \,10^{ - 20} \;{\text{atm}}, $$pO2≤10-20atm, with the addition of 5 wt% of carbon as an iron reducing agent. For all the non-oxidizing iron roasting conditions investigated, the iron in the Nd–Fe‒B scrap formed a cobalt-containing metallic phase, clearly distinct from the rare-earth phase at microscopic level. The thermal treatment was optimized to obtain a clear phase separation of metallic iron and rare-earth phase also at the macroscopic level, to enable easy mechanical removal of iron prior to the leaching step. The sample roasted at the optimum conditions (i.e., 5 wt% carbon, no flux, no quenching step, roasting temperature of 1400 °C and roasting time of 2 h) was leached in the water-containing ionic liquid betainium bis(trifluoromethylsulfonyl)imide, [Hbet][Tf2N]. A leaching time of only 20 min was sufficient to completely dissolve the rare-earth elements. The rare-earth elements/iron ratio in the leachate was about 50 times higher than the initial rare-earth elements/iron ratio in the Nd–Fe‒B scrap. Therefore, roasting in argon with addition of a small amount of carbon is an efficient process step to avoid the formation of NdFeO3 and to separate the rare-earth elements from the iron, resulting in selective leaching for the recovery of rare-earth elements from Nd–Fe‒B permanent magnets.


2016 ◽  
Vol 32 (4) ◽  
pp. 29-44 ◽  
Author(s):  
Baolu Zhou ◽  
Zhongxue Li ◽  
Yiqing Zhao ◽  
Cong Zhang ◽  
Yixin Wei

Abstract Rare earth elements (REEs) provide important properties to clean energy technologies such as wind turbine and hybrid electric vehicles. The global REE demand will grow rapidly during the global transformation toward a greener economy in the next decades. This high demand will require a steady supply chain in the long run. China has a monopoly of global REE production and extraction. The global REE supply chain runs the risk of disruption along with Chinese REE policy evolution. To overcome this supply chain vulnerability, new strategies and measures should be adopted to satisfy future REE supply/demand. There is a pressing need to explore REE deposits, develop efficient REE recycling techniques from end-of-life products, improve substitution technologies for REEs, and reduce the number of critical REEs used in devices. Such measures are facing significant challenges due to environmental factors and an unbalanced market, and overcoming them requires efforts from government and REE companies.


Sign in / Sign up

Export Citation Format

Share Document