Global and Local Multi-scale Feature Fusion for Object Detection and Semantic Segmentation

Author(s):  
Young-Chul Lim ◽  
Minsung Kang
2020 ◽  
Vol 16 (3) ◽  
pp. 132-145
Author(s):  
Gang Liu ◽  
Chuyi Wang

Neural network models have been widely used in the field of object detecting. The region proposal methods are widely used in the current object detection networks and have achieved well performance. The common region proposal methods hunt the objects by generating thousands of the candidate boxes. Compared to other region proposal methods, the region proposal network (RPN) method improves the accuracy and detection speed with several hundred candidate boxes. However, since the feature maps contains insufficient information, the ability of RPN to detect and locate small-sized objects is poor. A novel multi-scale feature fusion method for region proposal network to solve the above problems is proposed in this article. The proposed method is called multi-scale region proposal network (MS-RPN) which can generate suitable feature maps for the region proposal network. In MS-RPN, the selected feature maps at multiple scales are fine turned respectively and compressed into a uniform space. The generated fusion feature maps are called refined fusion features (RFFs). RFFs incorporate abundant detail information and context information. And RFFs are sent to RPN to generate better region proposals. The proposed approach is evaluated on PASCAL VOC 2007 and MS COCO benchmark tasks. MS-RPN obtains significant improvements over the comparable state-of-the-art detection models.


2020 ◽  
Vol 40 (10) ◽  
pp. 1015002
Author(s):  
刘芳 Liu Fang ◽  
吴志威 Wu Zhiwei ◽  
杨安喆 Yang Anzhe ◽  
韩笑 Han Xiao

2020 ◽  
Vol 12 (6) ◽  
pp. 1049 ◽  
Author(s):  
Jie Chen ◽  
Fen He ◽  
Yi Zhang ◽  
Geng Sun ◽  
Min Deng

The lack of pixel-level labeling limits the practicality of deep learning-based building semantic segmentation. Weakly supervised semantic segmentation based on image-level labeling results in incomplete object regions and missing boundary information. This paper proposes a weakly supervised semantic segmentation method for building detection. The proposed method takes the image-level label as supervision information in a classification network that combines superpixel pooling and multi-scale feature fusion structures. The main advantage of the proposed strategy is its ability to improve the intactness and boundary accuracy of a detected building. Our method achieves impressive results on two 2D semantic labeling datasets, which outperform some competing weakly supervised methods and are close to the result of the fully supervised method.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1625
Author(s):  
Jing Du ◽  
Zuning Jiang ◽  
Shangfeng Huang ◽  
Zongyue Wang ◽  
Jinhe Su ◽  
...  

The semantic segmentation of small objects in point clouds is currently one of the most demanding tasks in photogrammetry and remote sensing applications. Multi-resolution feature extraction and fusion can significantly enhance the ability of object classification and segmentation, so it is widely used in the image field. For this motivation, we propose a point cloud semantic segmentation network based on multi-scale feature fusion (MSSCN) to aggregate the feature of a point cloud with different densities and improve the performance of semantic segmentation. In our method, random downsampling is first applied to obtain point clouds of different densities. A Spatial Aggregation Net (SAN) is then employed as the backbone network to extract local features from these point clouds, followed by concatenation of the extracted feature descriptors at different scales. Finally, a loss function is used to combine the different semantic information from point clouds of different densities for network optimization. Experiments were conducted on the S3DIS and ScanNet datasets, and our MSSCN achieved accuracies of 89.80% and 86.3%, respectively, on these datasets. Our method showed better performance than the recent methods PointNet, PointNet++, PointCNN, PointSIFT, and SAN.


Sign in / Sign up

Export Citation Format

Share Document