Application of Parallel RBF Network on Iterative Prediction of Chaotic Time Series

Author(s):  
Ning Ma ◽  
Chen Lu ◽  
Wenjin Zhang ◽  
Hanxue Wu
2012 ◽  
Vol 433-440 ◽  
pp. 775-780
Author(s):  
Fang Wang ◽  
Jin Lan Yu ◽  
Pin Chang Zhu ◽  
Xi Feng Wei

The improved niche hybrid hierarchy genetic algorithm is presented to overcome the premature convergence which happens in genetic algorithm constructing RBF network. The niche with poor fitness of every individual is eliminated to save system resource and raise operation speed. The simulation results demonstrate the better predicted performance on the Mackey-Glass chaotic time series than other algorithms.


2020 ◽  
Vol 3 (SI1) ◽  
pp. SI102-SI112
Author(s):  
Duong Tuan Anh ◽  
Ta Ngoc Huy Nam

Chaotic time series are widespread in several real world areas such as finance, environment, meteorology, traffic flow, weather. A chaotic time series is considered as generated from the deterministic dynamics of a nonlinear system. The chaotic system is sensitive to initial conditions; points that are arbitrarily close initially become exponentially further apart with progressing time. Therefore, it is challenging to make accurate prediction in chaotic time series. The prediction using conventional statistical techniques, k-nearest-nearest neighbors algorithm, Multi-Layer-Perceptron (MPL) neural networks, Recurrent Neural Networks, Radial-Basis-Function (RBF) Networks and Support Vector Machines, do not give reliable prediction results for chaotic time series. In this paper, we investigate the use of a deep learning method, Deep Belief Network (DBN), combined with chaos theory to forecast chaotic time series. DBN should be used to forecast chaotic time series. First, the chaotic time series are analyzed by calculating the largest Lyapunov exponent, reconstructing the time series by phase-space reconstruction and determining the best embedding dimension and the best delay time. When the forecasting model is constructed, the deep belief network is used to feature learning and the neural network is used for prediction. We also compare the DBN –based method to RBF network-based method, which is the state-of-the-art method for forecasting chaotic time series. The predictive performance of the two models is examined using mean absolute error (MAE), mean squared error (MSE) and mean absolute percentage error (MAPE). Experimental results on several synthetic and real world chaotic datasets revealed that the DBN model is applicable to the prediction of chaotic time series since it achieves better performance than RBF network.


2012 ◽  
Vol 197 ◽  
pp. 271-277
Author(s):  
Zhu Ping Gong

Small data set approach is used for the estimation of Largest Lyapunov Exponent (LLE). Primarily, the mean period drawback of Small data set was corrected. On this base, the LLEs of daily qualified rate time series of HZ, an electronic manufacturing enterprise, were estimated and all positive LLEs were taken which indicate that this time series is a chaotic time series and the corresponding produce process is a chaotic process. The variance of the LLEs revealed the struggle between the divergence nature of quality system and quality control effort. LLEs showed sharp increase in getting worse quality level coincide with the company shutdown. HZ’s daily qualified rate, a chaotic time series, shows us the predictable nature of quality system in a short-run.


Sign in / Sign up

Export Citation Format

Share Document