The effect of initial on-state probability on effective capacity

Author(s):  
C. Amo-Quarm ◽  
K. Sohraby
Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1493
Author(s):  
Ayesha Ayub ◽  
Sobia Jangsher ◽  
M. Majid Butt ◽  
Abdur Rahman Maud ◽  
Farrukh A. Bhatti

Small cells deliver cost-effective capacity and coverage enhancement in a cellular network. In this work, we present the interplay of two technologies, namely Wi-Fi offloading and small-cell cooperation that help in achieving this goal. Both these technologies are also being considered for 5G and B5G (Beyond 5G). We simultaneously consider Wi-Fi offloading and small-cell cooperation to maximize average user throughput in the small-cell network. We propose two heuristic methods, namely Sequential Cooperative Rate Enhancement (SCRE) and Sequential Offloading Rate Enhancement (SORE) to demonstrate cooperation and Wi-Fi offloading, respectively. SCRE is based on cooperative communication in which a user data rate requirement is satisfied through association with multiple small-cell base stations (SBSs). However, SORE is based on Wi-Fi offloading, in which users are offloaded to the nearest Wi-Fi Access Point and use its leftover capacity when they are unable to satisfy their rate constraint from a single SBS. Moreover, we propose an algorithm to switch between the two schemes (cooperation and Wi-Fi offloading) to ensure maximum average user throughput in the network. This is called the Switching between Cooperation and Offloading (SCO) algorithm and it switches depending upon the network conditions. We analyze these algorithms under varying requirements of rate threshold, number of resource blocks and user density in the network. The results indicate that SCRE is more beneficial for a sparse network where it also delivers relatively higher average data rates to cell-edge users. On the other hand, SORE is more advantageous in a dense network provided sufficient leftover Wi-Fi capacity is available and more users are present in the Wi-Fi coverage area.


Author(s):  
Maria Cecilia Fernandez Montefiore ◽  
Gustavo Gonzalez ◽  
F. J. Lopez-Martinez ◽  
Fernando Gregorio
Keyword(s):  

2014 ◽  
Vol 519-520 ◽  
pp. 929-933 ◽  
Author(s):  
Zhe Ji ◽  
You Zheng Wang ◽  
Jian Hua Lu

In this paper, we study the effective capacity (EC) which was proposed to measure the quality of service (QoS) for fading channels. A unified expression for the effective capacity based on the method of moment generating function (MGF) is proposed. The unified expression applies to various fading channels and is derived for both single antenna and multiple antenna diversity system. The mathematical expression is illustrated with Nakagami-m fading channels and closed form expressions are derived in this case. The simulation results verify the consistence of the closed-form expressions with numerical evaluations.


Sign in / Sign up

Export Citation Format

Share Document