small cell network
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 39)

H-INDEX

8
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Yu-Ting Wang ◽  
Yun-Zhan Cai ◽  
Lo-An Chen ◽  
Sian-Jhe Lin ◽  
Ren-Shiou Liu ◽  
...  

Author(s):  
Mubarak Mohammed Al-Ezzi Sufyan ◽  
Waheed Ur Rehman ◽  
Tabinda Salam ◽  
Qazi Ejaz Ali ◽  
Abeera Ilyas ◽  
...  

AbstractIn this era of the digital world, data play a central role and are continuously challenging spectrum efficiency. With the introduction of enriched multimedia user-generated content, the challenges are even more aggravated. In this vein, uplink caching is considered as one of the promising solutions to effectively cater the user’s demands. One of the main challenges for uplink caching is duplication elimination. In this paper, a cache enabled uplink transmission with a duplication elimination scheme is proposed. The proposed scheme matches the mobile’s data to be uploaded with the cached contents both at mobile station (MS) and small base station (SBS). In contrast to existing techniques, the proposed scheme broadcasts the cached contents at an SBS to all the MSs under its footprint. This provides MS an opportunity to exploit the list of cached contents before uploading its data. A MS only uploads its data if it is not already cached at an SBS. This significantly reduces duplication before the real transmission takes place. Furthermore, the proposed technique reduces energy consumption in addition to improving spectral efficiency and network throughput. Besides, a higher caching hit ratio and lower caching miss ratio are also observed as compared to other schemes. The simulation results reveal that the proposed scheme saves 97% energy for SBS, whereas 96–100% energy is saved for MS on average.


2021 ◽  
Vol 10 (5) ◽  
pp. 2686-2695
Author(s):  
Anh-Tu Le ◽  
Dinh-Thuan Do ◽  
Munyaradzi Munochiveyi

This article considers the outage performance of the downlink transmission for a small cell network in a heterogeneous network. Due to mobility and distribution of users, it is necessary to study massive connections and high energy efficiency for such kind of systems. To be an enabler of energy harvesting, a power beacon is helpful to support the base station to send signals to distant users, and wireless power transfer (WPT) is exploited to guarantee the data packets transmission from the power beacon to the base station. To provide massive connections, we propose a novel non-orthogonal multiple access (NOMA) technique combined with WPT to enhance outage performance and latency reduction. Furthermore, we derive outage probability (OP) to characterize the system performance. Simulation results are verified to match well between theoretical and analytical methods, and main parameters are determined to understand how they affect the proposed scheme.


2021 ◽  
Vol 10 (4) ◽  
pp. 2302-2309
Author(s):  
Chi-Bao Le ◽  
Dinh-Thuan Do

A downlink of small-cell network is studied in this paper studies in term of outage performance. We benefit by design of multiple antennas at the base station and fullduplex transmission mode. The scenario of multiple surrounded small-cell networks is considered to look the impact of interference. We derive the closed-form expression of outage probability to show performance of mobile user. We investigate target rate is main factor affecting to outage performance. According to the considered system, simulation results indicate reasonable value of outage probability and throughput as well. Finally, Monte-Carlo simulation method is deployed to determine exactness of main results found in this article. Finally, the considered system can exhibit improved performance if controlling interference term.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1493
Author(s):  
Ayesha Ayub ◽  
Sobia Jangsher ◽  
M. Majid Butt ◽  
Abdur Rahman Maud ◽  
Farrukh A. Bhatti

Small cells deliver cost-effective capacity and coverage enhancement in a cellular network. In this work, we present the interplay of two technologies, namely Wi-Fi offloading and small-cell cooperation that help in achieving this goal. Both these technologies are also being considered for 5G and B5G (Beyond 5G). We simultaneously consider Wi-Fi offloading and small-cell cooperation to maximize average user throughput in the small-cell network. We propose two heuristic methods, namely Sequential Cooperative Rate Enhancement (SCRE) and Sequential Offloading Rate Enhancement (SORE) to demonstrate cooperation and Wi-Fi offloading, respectively. SCRE is based on cooperative communication in which a user data rate requirement is satisfied through association with multiple small-cell base stations (SBSs). However, SORE is based on Wi-Fi offloading, in which users are offloaded to the nearest Wi-Fi Access Point and use its leftover capacity when they are unable to satisfy their rate constraint from a single SBS. Moreover, we propose an algorithm to switch between the two schemes (cooperation and Wi-Fi offloading) to ensure maximum average user throughput in the network. This is called the Switching between Cooperation and Offloading (SCO) algorithm and it switches depending upon the network conditions. We analyze these algorithms under varying requirements of rate threshold, number of resource blocks and user density in the network. The results indicate that SCRE is more beneficial for a sparse network where it also delivers relatively higher average data rates to cell-edge users. On the other hand, SORE is more advantageous in a dense network provided sufficient leftover Wi-Fi capacity is available and more users are present in the Wi-Fi coverage area.


Author(s):  
Wenson Chang ◽  
Zhao-Ting Meng ◽  
Kuang-Chieh Liu ◽  
Lc Wang

Sign in / Sign up

Export Citation Format

Share Document