scholarly journals A Comparative Analysis of Wi-Fi Offloading and Cooperation in Small-Cell Network

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1493
Author(s):  
Ayesha Ayub ◽  
Sobia Jangsher ◽  
M. Majid Butt ◽  
Abdur Rahman Maud ◽  
Farrukh A. Bhatti

Small cells deliver cost-effective capacity and coverage enhancement in a cellular network. In this work, we present the interplay of two technologies, namely Wi-Fi offloading and small-cell cooperation that help in achieving this goal. Both these technologies are also being considered for 5G and B5G (Beyond 5G). We simultaneously consider Wi-Fi offloading and small-cell cooperation to maximize average user throughput in the small-cell network. We propose two heuristic methods, namely Sequential Cooperative Rate Enhancement (SCRE) and Sequential Offloading Rate Enhancement (SORE) to demonstrate cooperation and Wi-Fi offloading, respectively. SCRE is based on cooperative communication in which a user data rate requirement is satisfied through association with multiple small-cell base stations (SBSs). However, SORE is based on Wi-Fi offloading, in which users are offloaded to the nearest Wi-Fi Access Point and use its leftover capacity when they are unable to satisfy their rate constraint from a single SBS. Moreover, we propose an algorithm to switch between the two schemes (cooperation and Wi-Fi offloading) to ensure maximum average user throughput in the network. This is called the Switching between Cooperation and Offloading (SCO) algorithm and it switches depending upon the network conditions. We analyze these algorithms under varying requirements of rate threshold, number of resource blocks and user density in the network. The results indicate that SCRE is more beneficial for a sparse network where it also delivers relatively higher average data rates to cell-edge users. On the other hand, SORE is more advantageous in a dense network provided sufficient leftover Wi-Fi capacity is available and more users are present in the Wi-Fi coverage area.

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Jaesung Park ◽  
Heejung Byun

Smart interference management methods are required to enhance the throughput, coverage, and energy efficiency of a dense small cell network. In this paper, we propose a transmit power control for energy efficient operation of a dense small cell network. We cast the power control problem as a noncooperative game to satisfy the design requirement that small cells do not need any information exchange among them. We analyze the sufficient condition for the existence of a Nash equilibrium (NE) state of the proposed game. We also analyze that the NE state is unique by transforming the original nonlinear fractional programming problem into a nonlinear parametric programming problem. Through simulation studies, we verify our analysis results. In addition, we show that the proposed method achieves higher energy efficiency of a network and balances the energy efficiency among cells more evenly than the methods based on the AIMD (additive increase and multiplicative decrease) algorithm.


2021 ◽  
Author(s):  
Joydev Ghosh

<div>In LTE-A (LTE-Advanced), the access network cell formation is an integrated form of outdoor unit and indoor unit. With the indoor unit extension the access network becomes heterogeneous (HetNet). HetNet is a straightforward way to provide quality of service (QoS) in terms better network coverage and high data rate. Although, due to uncoordinated, densely deployed small cells large interference may occur, particularly in case of operating small cells within the spectrum of macro base stations (MBS). This paper probes the impact of small cell on the outage probability and the average network throughput enhancement. The positions of the small cells are retained random and modelled with homogeneous Poisson Point Process (PPP) and Matérn Cluster process (MCP). The paper provides an analytic form which permits to compute the outage probability, including the mostly applied fast fading channel types. Furthermore, simulations are evaluated in order to calculate the average network throughput for both random processes. Simulation results highlights that the network throughput remarkably grows due to small cell deployment.</div>


2017 ◽  
Vol 27 (17) ◽  
pp. 2670-2676.e4 ◽  
Author(s):  
Jasmin Imran Alsous ◽  
Paul Villoutreix ◽  
Alexander M. Berezhkovskii ◽  
Stanislav Y. Shvartsman

MACRo 2015 ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 135-144
Author(s):  
Péter Ratkóczy ◽  
Attila Mitcsenkov

AbstractThe experienced mobile traffic increase in the recent years made traffic capacity the bottleneck instead of the coverage constraints, calling for significantly higher density of the base stations. Heterogeneous radio access networks (HetNet) provide a possible solution to this problem, combining various wireless technologies. In this paper we investigated the joint dimensioning of the co-existent radio access networks, the relation between the required macro and small cell densities to meet a certain traffic demand, and compared the two main, competing technological solutions, namely small cells and Wi-Fi, suitable to complement an LTE (macrocell) network.


Sign in / Sign up

Export Citation Format

Share Document