A Fixed Zone Perturb and Observe MPPT Technique for A Standalone Distributed PV System

Author(s):  
Niraja Swaminathan ◽  
N Lakshminarasamma ◽  
Yue Cao
2012 ◽  
Vol 430-432 ◽  
pp. 1348-1351
Author(s):  
Yu Shui Huang ◽  
Yan Jie Wei ◽  
Xue Chen

The output of photovoltaic (PV) array is affected by the environmental factors such as irradiation and temperature, so an effective maximum power point tracking (MPPT) method of PV array is necessary. In this paper, a modified perturb and observe (MPO) method is proposed to achieve MPPT for a PV system and to improve the shortcomings of prior methods. Comparing with a typical perturb and observe (P&O) MPPT method, the MPO efficiency is improved in transient state by the proposed MPPT as theoretical prediction.


Changing meteorological conditions influence the output power of the Photovolataic systems, which affect the overall performance of the system, in turn reduces the overall efficiency. So, to draw maximal power from the PV system a technique called maximum power point tracking (MPPT) is incorporated. Two perturbations-based algorithms are presented in this paper are Perturb and Observe (P&O), and Modified drift-free perturb and observe (MP&O). Fixed step size duty ratio is used in both of these algorithms. The boost converter is used between the photovoltaic module and the resistive Load. The simulation and experimental results for 250W PV module are presented. The simulation studies are carried out in MATLAB SIMULINK. The algorithms are implemented using TMS320F28069M.


2021 ◽  
Vol 229 ◽  
pp. 01013
Author(s):  
Hassan Essakhi ◽  
Sadik Farhat ◽  
Mohamed Mediouni ◽  
Yahya Dbaghi

This paper deals with analysis, modeling, and simulation of a Photovoltaic (PV) system with an intelligent Maximum Power Point Tracking (MPPT) controller based on fuzzy logic and to compare the dynamic performances: rapidity and stability of a fuzzy controller with the traditional controller based on the “Perturb and Observe” algorithm (P&O). The system is simulated under Simulink/Matlab environment. The simulation results show that the fuzzy MPPT controller is faster and more stable during abrupt changes in irradiation values.


2021 ◽  
Vol 40 (1) ◽  
pp. 63-77
Author(s):  
Ibram Y. Fawzy ◽  
Y.S. Mohamad ◽  
E.G. Shehata ◽  
Montaser Abd El Sattar

2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Hedi Trabelsi ◽  
Younes Boujelbene

This paper explains the need for renewable energies for “green revival” of the economy. First, we will analyze the overall context of the double crisis. Then we will focus on “green recovery” as a solution for these two crises. Finally, we will study the example of the photovoltaic system as a source of renewable energy by presenting and comparing four types of MPPT commands such as: Perturb and Observe, Incremental Conductance, Fractional Open-Circuit Voltage (FOV) and Fractional Short-Circuit Current (FCC). The Matlab-Simulink environment will be used to analyze and interpret the simulation results of these algorithms and therefore we show the performance and limits of each algorithm.


Sign in / Sign up

Export Citation Format

Share Document