S-Tapered Fiber Sensors for Highly Sensitive Measurement of Refractive Index and Axial Strain

2012 ◽  
Vol 30 (19) ◽  
pp. 3126-3132 ◽  
Author(s):  
Rui Yang ◽  
Yong-Sen Yu ◽  
Chao Chen ◽  
Yang Xue ◽  
Xu-Lin Zhang ◽  
...  
2011 ◽  
Vol 3 (6) ◽  
pp. 1189-1197 ◽  
Author(s):  
Jinpeng Yang ◽  
Lan Jiang ◽  
Sumei Wang ◽  
Qianghua Chen ◽  
Benye Li ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
pp. 1-11
Author(s):  
Emranul Haque ◽  
Abdullah Al Noman ◽  
Md. Anwar Hossain ◽  
Nguyen Hoang Hai ◽  
Yoshinori Namihira ◽  
...  

2019 ◽  
Vol 9 (9) ◽  
pp. 1923
Author(s):  
Biqiang Jiang ◽  
Zhen Hao ◽  
Dingyi Feng ◽  
Kaiming Zhou ◽  
Lin Zhang ◽  
...  

We propose and experimentally demonstrate a hybrid grating, in which an excessively tilted fiber grating (Ex-TFG) and a fiber Bragg grating (FBG) were co-inscribed in a reduced-diameter fiber (RDF). The hybrid grating showed strong resonances due to coupling among core mode and a set of polarization-dependent cladding modes. This coupling showed enhanced evanescent fields by the reduced cladding size, thus allowing stronger interaction with the surrounding medium. Moreover, the FBG’s Bragg resonance confined by the thick cladding was exempt from the change of the surrounding medium’s refractive index (RI), and then the FBG can work as a temperature compensator. As a result, the Ex-TFG in RDF promised a highly sensitive RI measurement, with a sensitivity up to ~1224 nm/RIU near the RI of 1.38. Through simultaneous measurement of temperature and RI, the temperature dependence of water’s RI is then determined. Therefore, the proposed hybrid grating with a spectrum of multi-peaks embedded with a sharp Bragg resonance is a promising alternative for the simultaneous measurement of multi-parameters for many RI-based sensing applications.


2018 ◽  
Vol 10 (4) ◽  
pp. 1-10 ◽  
Author(s):  
Famei Wang ◽  
Chao Liu ◽  
Zhijie Sun ◽  
Tao Sun ◽  
Banghua Liu ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Anthony Lim ◽  
Wen Bin Ji ◽  
Swee Chuan Tjin

A new structure of Long-Period Gratings (LPGs) sensor is introduced as a sensitive ambient RI sensor. This structure consists of creating periodic corrugations on the cladding of the LPG. The experimental results show that this LPG structure has good performances in terms of linearity and sensitivity and serves as a highly sensitive and cost-effective sensor. It also has the advantage of portability as the corrugation can also serve as the reservoir for the specimen collection to be tested.


Sign in / Sign up

Export Citation Format

Share Document