scholarly journals Electromagnetically Induced Transparency in an All-Dielectric Metamaterial-Waveguide With Large Group Index

2017 ◽  
Vol 9 (5) ◽  
pp. 1-8 ◽  
Author(s):  
Chuanshuai Sui ◽  
Bingxin Han ◽  
Tingting Lang ◽  
Xiangjun Li ◽  
Xufeng Jing ◽  
...  
Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 177 ◽  
Author(s):  
David Ziemkiewicz

In this paper, we show that Electromagnetically Induced Transparency (EIT) can be realized in mediums with Rydberg excitons. With realistic, reliable parameters which show good agreement with optical and electro-optical experiments, as well as the proper choice of Rydberg exciton states in the Cu2O crystal, we indicate how the EIT can be performed. The calculations show that, due to a large group index, one can expect the slowing down of a light pulse by a factor of about 10 4 in this medium.


2015 ◽  
Vol 29 (30) ◽  
pp. 1550185 ◽  
Author(s):  
R. Karimi ◽  
S. H. Asadpour ◽  
S. Batebi ◽  
H. Rahimpour Soleimani

The influence of external magnetic field and relative phase between two electric field components of the probe field on absorption–dispersion and group index of a four-level atomic system with two degenerate sublevels are investigated. The results show that, the behaviors of weak probe light can be controlled by an external magnetic field. It is shown that in the presence of the external magnetic field the additional electromagnetically induced transparency (EIT) window can be obtained. Our result also reveal that the switching from slow to fast light or vice versa can be manipulated by changing the phase difference between the two circularly polarized components of a single coherent field.


2019 ◽  
Vol 33 (09) ◽  
pp. 1950068 ◽  
Author(s):  
Renxia Ning ◽  
Xiang Gao ◽  
Zhenhai Chen

A multiband tunable electromagnetic induced transparency (EIT) effect in metamaterial at microwave frequency range is investigated. The sandwich structure contains silicon dioxide and gold layers. The metamaterial structure has multiband EIT phenomenon due to coupling with U-Shaped split-ring resonators (SRRs) and cut wire (CW). Two different modes can be obtained in CW and a single band EIT effects in SRRs. Results show that the different resonances in the structure lead to multiband EIT. By adding the finding of the graphene layer on top of the structures, EIT window can be changed obviously. It is shown that the graphene can adjust EIT phenomenon. The group index is calculated to exhibit the slow light effect. The demonstrated phenomenon can provide valuable variety of important applications, including microwave communication technology, microwave devices, slow light and switch devices.


2010 ◽  
Vol 97 (24) ◽  
pp. 241904 ◽  
Author(s):  
Lei Zhang ◽  
Philippe Tassin ◽  
Thomas Koschny ◽  
Cihan Kurter ◽  
Steven M. Anlage ◽  
...  

2015 ◽  
Vol 54 (12) ◽  
pp. 3708 ◽  
Author(s):  
Pei Ding ◽  
Jinna He ◽  
Junqiao Wang ◽  
Chunzhen Fan ◽  
Erjun Liang

Sign in / Sign up

Export Citation Format

Share Document