Liquid-Phase Crystallized Silicon Solar Cells on Glass: Increasing the Open-Circuit Voltage by Optimized Interlayers for n- and p-Type Absorbers

2015 ◽  
Vol 5 (6) ◽  
pp. 1757-1761 ◽  
Author(s):  
Daniel Amkreutz ◽  
William D. Barker ◽  
Sven Kuhnapfel ◽  
Paul Sonntag ◽  
Onno Gabriel ◽  
...  
2007 ◽  
Vol 101 (11) ◽  
pp. 114301 ◽  
Author(s):  
J. M. Pearce ◽  
N. Podraza ◽  
R. W. Collins ◽  
M. M. Al-Jassim ◽  
K. M. Jones ◽  
...  

2015 ◽  
Vol 212 (4) ◽  
pp. 840-845 ◽  
Author(s):  
Simon Hänni ◽  
Mathieu Boccard ◽  
Grégory Bugnon ◽  
Matthieu Despeisse ◽  
Jan-Willem Schüttauf ◽  
...  

2005 ◽  
Vol 865 ◽  
Author(s):  
Akimasa Yamada ◽  
Koji Matsubara ◽  
Keiichiro Sakurai ◽  
Shogo Ishizuka ◽  
Hitoshi Tampo Hajime ◽  
...  

AbstractThe reasons why the open circuit voltage (Voc) of high-x CuIn1-xGaxSe2 (CIGS)/ZnO solar cells remain low are discussed. Here it is shown that the Voc ceiling can be interpreted simply on the basis of a model that the valence-band energy (Ev) of CIGS is almost immovable irrespective of x. When the conduction-band energy (Ec) of ZnO is lower than that of high-x CIGS (DEc<0), the built-in potential (Vbi) of a CIGS/ZnO junction is equivalent to the flat-band potential (Vbi) that arises from the separation between the Fermi energies of the two materials. If the Ev (and therefore the Fermi energy) of p-type CIGS is constant with increasing x, the Vbi and Voc that follows the Vbi remain unchanged since the Fermi energy of ZnO is constant. This unchangeable Voc reduces the conversion efficiency of high-x CIGS cells in cooperation with reduced photocurrents due to a larger bandgap. A positive offset, ΔEc>o gives rise to a photoelectrons barrier in the conduction-band that partially cancels Voc, thus the Voc of a low-x CIGS cell is governed by the Ec of CIGS. Based upon this concept, a material selection guideline is given for the windows and transparent electrodes appropriate for high-x CIGS absorbers-based solar cells.


2009 ◽  
Vol 1154 ◽  
Author(s):  
Hideyuki Murata ◽  
Yoshiki Kinoshita ◽  
Yoshihiro Kanai ◽  
Toshinori Matsushima ◽  
Yuya Ishii

AbstractWe report the increase in open-circuit voltage (Voc) by inserting of MoO3 layer on ITO substrate to improve built-in potential of organic solar cells (OSCs). In the OSCs using 5,10,15,20-tetraphenylporphyrine (H2TPP) as a p-type material and C60 as a n-type material, the Voc effectively increased from 0.57 to 0.97 V as increasing MoO3 thickness. The obtained highest Voc (0.97 V) is consistent with the theoretical value estimated from the energy difference between the LUMO (−4.50 eV) of C60 and the HOMO (−5.50 eV) of H2TPP layer. Importantly, the enhancement in the Voc was achieved without affecting the short-circuit current density (Jsc) and the fill-factor (FF). Thus, the power conversion efficiency of the device linearly increased from 1.24% to 1.88%. We also demonstrated that a MoO3 buffer layer enhances the stability of OSCs after photo-irradiation. We have investigated the stability of OSCs using H2TPP and N,N′-di(1-naphthyl)-N,N′-diphenylbenzidine as a p-type layer. The both devices with MoO3 layer showed improved stability. These results clearly suggest that the interface at ITO/p-type layer affects the device stability.


Sign in / Sign up

Export Citation Format

Share Document