Modeling the Impact of Bulk Resistivity on Bifacial n-PERT Rear-Junction Solar Cells

2021 ◽  
Vol 11 (1) ◽  
pp. 3-8
Author(s):  
Zih-Wei Peng ◽  
Lejo J. Koduvelikulathu ◽  
Radovan Kopecek
Matter ◽  
2020 ◽  
Author(s):  
Junjie Ma ◽  
Minchao Qin ◽  
Yuhao Li ◽  
Xiao Wu ◽  
Zhaotong Qin ◽  
...  

2011 ◽  
Vol 115 (29) ◽  
pp. 14111-14122 ◽  
Author(s):  
Nikolay Radychev ◽  
Irina Lokteva ◽  
Florian Witt ◽  
Joanna Kolny-Olesiak ◽  
Holger Borchert ◽  
...  

Author(s):  
Xiaoyan Yu ◽  
Qin Zhou ◽  
Jianbin Xu ◽  
Lusheng Liang ◽  
Xiaobing Wang ◽  
...  

Solar Energy ◽  
2018 ◽  
Vol 176 ◽  
pp. 241-247 ◽  
Author(s):  
Ke Tao ◽  
Shuai Jiang ◽  
Rui Jia ◽  
Ying Zhou ◽  
Pengfei Zhang ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yaser Abdulraheem ◽  
Moustafa Ghannam ◽  
Hariharsudan Sivaramakrishnan Radhakrishnan ◽  
Ivan Gordon

Photovoltaic devices based on amorphous silicon/crystalline silicon (a-Si:H/c-Si) heterojunction interfaces hold the highest efficiency as of date in the class of silicon-based devices with efficiencies exceeding 26% and are regarded as a promising technology for large-scale terrestrial PV applications. The detailed understanding behind the operation of this type of device is crucial to improving and optimizing its performance. SHJ solar cells have primarily two main interfaces that play a major role in their operation: the transparent conductive oxide (TCO)/a-Si:H interface and the a-Si:H/c-Si heterojunction interface. In the work presented here, a detailed analytical description is provided for the impact of both interfaces on the performance of such devices and especially on the device fill factor ( FF ). It has been found that the TCO work function can dramatically impact the FF by introducing a series resistance element in addition to limiting the forward biased current under illumination causing the well-known S-shape characteristic in the I-V curve of such devices. On the other hand, it is shown that the thermionic emission barrier at the heterojunction interface can play a major role in introducing an added series resistance factor due to the intrinsic a-Si:H buffer layer that is usually introduced to improve surface passivation. Theoretical explanation on the role of both interfaces on device operation based on 1D device simulation is experimentally verified. The I-V characteristics of fabricated devices were compared to the curves produced by simulation, and the observed degradation in the FF of fabricated devices was explained in light of analytical findings from simulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
F. X. Abomo Abega ◽  
A. Teyou Ngoupo ◽  
J. M. B. Ndjaka

Numerical modelling is used to confirm experimental and theoretical work. The aim of this work is to present how to simulate ultrathin hydrogenated amorphous silicon- (a-Si:H-) based solar cells with a ITO BRL in their architectures. The results obtained in this study come from SCAPS-1D software. In the first step, the comparison between the J-V characteristics of simulation and experiment of the ultrathin a-Si:H-based solar cell is in agreement. Secondly, to explore the impact of certain properties of the solar cell, investigations focus on the study of the influence of the intrinsic layer and the buffer layer/absorber interface on the electrical parameters ( J SC , V OC , FF, and η ). The increase of the intrinsic layer thickness improves performance, while the bulk defect density of the intrinsic layer and the surface defect density of the buffer layer/ i -(a-Si:H) interface, respectively, in the ranges [109 cm-3, 1015 cm-3] and [1010 cm-2, 5 × 10 13  cm-2], do not affect the performance of the ultrathin a-Si:H-based solar cell. Analysis also shows that with approximately 1 μm thickness of the intrinsic layer, the optimum conversion efficiency is 12.71% ( J SC = 18.95   mA · c m − 2 , V OC = 0.973   V , and FF = 68.95 % ). This work presents a contribution to improving the performance of a-Si-based solar cells.


Sign in / Sign up

Export Citation Format

Share Document