Faraday Rotators With Short Magneto-Optical Elements for 50-kW Laser Power

2007 ◽  
Vol 43 (6) ◽  
pp. 451-457 ◽  
Author(s):  
Dmitry S. Zheleznov ◽  
Ivan B. Mukhin ◽  
Oleg V. Palashov ◽  
Efim A. Khazanov ◽  
Alexander V. Voitovich
Keyword(s):  
2008 ◽  
Vol 53-54 ◽  
pp. 337-342
Author(s):  
Duo Shu Wang ◽  
Chong Tai Luo ◽  
Tao Chen ◽  
Yu Qing Xiong ◽  
Hong Kai Liu ◽  
...  

With high diffractive efficiency, Continuous Relief Diffractive Optical Elements (CR-DOE) can be used to eliminate chromatic aberration, partial aberration and simplify optical system. The technology for CR-DOE with Laser Direct Writing method has advantages of simple process, short period and low cost. The paper studied on the characterization method of laser power for the technology. The principle of mask fabrication of CR-DOE by Laser Direct Writing is described in the paper. The relations between microstructure depth and laser power, exposing position radius and laser power were studied. The results showed that microstructure depth changes in direct ratio to laser power and laser power should change in direct to exposing position radius while several same depth microstructures were fabricated at different radius. At the end, the paper gave the charactering method and also fabricated the mask of a kind of centrosymmetric continuous relief diffractive focus lens with the method.


Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


Author(s):  
Y. Cheng ◽  
J. Liu ◽  
M.B. Stearns ◽  
D.G. Steams

The Rh/Si multilayer (ML) thin films are promising optical elements for soft x-rays since they have a calculated normal incidence reflectivity of ∼60% at a x-ray wavelength of ∼13 nm. However, a reflectivity of only 28% has been attained to date for ML fabricated by dc magnetron sputtering. In order to determine the cause of this degraded reflectivity the microstructure of this ML was examined on cross-sectional specimens with two high-resolution electron microscopy (HREM and HAADF) techniques.Cross-sectional specimens were made from an as-prepared ML sample and from the same ML annealed at 298 °C for 1 and 100 hours. The specimens were imaged using a JEM-4000EX TEM operating at 400 kV with a point-to-point resolution of better than 0.17 nm. The specimens were viewed along Si [110] projection of the substrate, with the (001) Si surface plane parallel to the beam direction.


Sign in / Sign up

Export Citation Format

Share Document