scholarly journals The Impact of Multi-Connectivity and Handover Constraints on Millimeter Wave and Terahertz Cellular Networks

Author(s):  
Mustafa F. Ozkoc ◽  
Athanasios Koutsaftis ◽  
Rajeev Kumar ◽  
Pei Liu ◽  
Shivendra S. Panwar
Crystals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Henning Tesmer ◽  
Rani Razzouk ◽  
Ersin Polat ◽  
Dongwei Wang ◽  
Rolf Jakoby ◽  
...  

In this paper we investigate the temperature dependent behavior of a liquid crystal (LC) loaded tunable dielectric image guide (DIG) phase shifter at millimeter-wave frequencies from 80 GHz to 110 GHz for future high data rate communications. The adhesive, necessary for precise fabrication, is analyzed before temperature dependent behavior of the component is shown, using the nematic LC-mixture GT7-29001. The temperature characterization is conducted by changing the temperature of the LC DIG’s ground plane between −10∘C and 80 ∘C. The orientation of the LC molecules, and therefore the effective macroscopic relative permittivity of the DIG, is changed by inserting the temperature setup in a fixture with rotatable magnets. Temperature independent matching can be observed, while the insertion loss gradually increases with temperature for both highest and lowest permittivity of the LC. At 80 ∘C the insertion loss is up to 1.3dB higher and at −10∘C it is 0.6dB lower than the insertion loss present at 20 ∘C. In addition, the achievable differential phase is reduced with increasing temperature. The impact of molecule alignment to this reduction is shown for the phase shifter and an estimated 85% of the anisotropy is still usable with an LC DIG phase shifter when increasing the temperature from 20 ∘C to 80 ∘C. Higher reduction of differential phase is present at higher frequencies as the electrical length of the phase shifter increases. A maximum difference in differential phase of 72∘ is present at 110 GHz, when increasing the temperature from 20 ∘C to 80 ∘C. Nevertheless, a well predictable, quasi-linear behavior can be observed at the covered temperature range, highlighting the potential of LC-based dielectric components at millimeter wave frequencies.


2020 ◽  
Vol 69 (6) ◽  
pp. 6178-6188
Author(s):  
Nor Aishah Muhammad ◽  
Nur Ilyana Anwar Apandi ◽  
Yonghui Li ◽  
Norhudah Seman

2015 ◽  
Vol 2015 ◽  
pp. 1-22 ◽  
Author(s):  
Ivan Aldaya ◽  
Gabriel Campuzano ◽  
Gerardo Castañón ◽  
Alejandro Aragón-Zavala

Given the interference avoidance capacity, high gain, and dynamical reconfigurability, phased array antennas (PAAs) have emerged as a key enabling technology for future broadband mobile applications. This is especially important at millimeter-wave (mm-wave) frequencies, where the high power consumption and significant path loss impose serious range constraints. However, at mm-wave frequencies the phase and amplitude control of the feeding currents of the PAA elements is not a trivial issue because electrical beamforming requires bulky devices and exhibits relatively narrow bandwidth. In order to overcome these limitations, different optical beamforming architectures have been presented. In this paper we review the basic principles of phased arrays and identify the main challenges, that is, integration of high-speed photodetectors with antenna elements and the efficient optical control of both amplitude and phase of the feeding current. After presenting the most important solutions found in the literature, we analyze the impact of the different noise sources on the PAA performance, giving some guidelines for the design of optically fed PAAs.


Author(s):  
Yingzhe Li ◽  
Jeffrey G. Andrews ◽  
Francois Baccelli ◽  
Thomas D. Novlan ◽  
Jianzhong Zhang

2018 ◽  
Vol 27 (12) ◽  
pp. 1850195
Author(s):  
P. Mangayarkarasi ◽  
J. Raja

Energy-efficient and reliable data transmission is a challenging task in wireless relay networks (WRNs). Energy efficiency in cellular networks has received significant attention because of the present need for reduced energy consumption, thereby maintaining the profitability of networks, which in turn makes these networks “greener”. The urban cell topography needs more energy to cover the total area of the cell. The base station does not cover the entire area in a given topography and adding more number of base stations is a cost prohibitive one. Energy-efficient relay placement model which calculates the maximum cell coverage is proposed in this work that covers all sectors and also an energy-efficient incremental redundancy-hybrid automatic repeat request (IR-HARQ) power allocation scheme to improve the reliability of the network by improving the overall network throughput is proposed. An IR-HARQ power allocation method maximizes the average incremental mutual information at each round, and its throughput quickly converges to the ergodic channel capacity as the number of retransmissions increases. Simulation results show that the proposed IR-HARQ power allocation achieves full channel capacity with average transmission delay and maintains good throughput under less power consumption. Also the impact of relaying performance on node distances between relay station and base station as well as between user and relay station and relay height for line of sight conditions are analyzed using full decode and forward (FDF) and partial decode and forward (PDF) relaying schemes. Compared to FDF scheme, PDF scheme provides better performance and allows more freedom in the relay placement for an increase in cell coverage.


Sign in / Sign up

Export Citation Format

Share Document