CORL2: Exploring Cooperative Opportunities, Reducing Latency and Prolonging Network Lifetime for Data Collection Using Mobile Sinks in Wireless Sensor Networks

2021 ◽  
pp. 1-1
Author(s):  
Weimin Wen ◽  
Chih-Yung Chang ◽  
Shih-Jung Wu ◽  
Diptendu Sinha Roy
Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2627 ◽  
Author(s):  
Weimin Wen ◽  
Chih-Yung Chang ◽  
Shenghui Zhao ◽  
Cuijuan Shang

Data collection problems have received much attention in recent years. Many data collection algorithms that constructed a path and adopted one or more mobile sinks to collect data along the paths have been proposed in wireless sensor networks (WSNs). However, the efficiency of the established paths still can be improved. This paper proposes a cooperative data collection algorithm (CDCA), which aims to prolong the network lifetime of the given WSNs. The CDCA initially partitions the n sensor nodes into k groups and assigns each mobile sink acting as the local mobile sink to collect data generated by the sensors of each group. Then the CDCA selects an appropriate set of data collection points in each group and establishes a separate path passing through all the data collection points in each group. Finally, a global path is constructed and the rendezvous time points and the speed of each mobile sink are arranged for collecting data from k local mobile sinks to the global mobile sink. Performance evaluations reveal that the proposed CDCA outperforms the related works in terms of rendezvous time, network lifetime, fairness index as well as efficiency index.


2017 ◽  
Vol 13 (7) ◽  
pp. 155014771771759 ◽  
Author(s):  
Yalin Nie ◽  
Haijun Wang ◽  
Yujie Qin ◽  
Zeyu Sun

When monitoring the environment with wireless sensor networks, the data sensed by the nodes within event backbone regions can adequately represent the events. As a result, identifying event backbone regions is a key issue for wireless sensor networks. With this aim, we propose a distributed and morphological operation-based data collection algorithm. Inspired by the use of morphological erosion and dilation on binary images, the proposed distributed and morphological operation-based data collection algorithm calculates the structuring neighbors of each node based on the structuring element, and it produces an event-monitoring map of structuring neighbors with less cost and then determines whether to erode or not. The remaining nodes that are not eroded become the event backbone nodes and send their sensing data. Moreover, according to the event backbone regions, the sink can approximately recover the complete event regions by the dilation operation. The algorithm analysis and experimental results show that the proposed algorithm can lead to lower overhead, decrease the amount of transmitted data, prolong the network lifetime, and rapidly recover event regions.


2010 ◽  
Vol 6 (1) ◽  
pp. 402680 ◽  
Author(s):  
Harshavardhan Sabbineni ◽  
Krishnendu Chakrabarty

We present a two-tier distributed hash table-based scheme for data-collection in event-driven wireless sensor networks. The proposed method leverages mobile sinks to significantly extend the lifetime of the sensor network. We propose localized algorithms using a distributed geographic hash-table mechanism that adds load balancing capabilities to the data-collection process. We address the hotspot problem by rehashing the locations of the mobile sinks periodically. The proposed mobility model moves the sink node only upon the occurrence of an event according to the evolution of current events, so as to minimize the energy consumption incurred by the multihop transmission of the event-data. Data is collected via single-hop routing between the sensor node and the mobile sink. Simulation results demonstrate significant gains in energy savings, while keeping the latency and the communication overhead at low levels for a variety of parameter values.


2017 ◽  
Vol 16 (5) ◽  
pp. 1420-1433 ◽  
Author(s):  
Shusen Yang ◽  
Usman Adeel ◽  
Yad Tahir ◽  
Julie A. McCann

Sign in / Sign up

Export Citation Format

Share Document