scholarly journals Distributed and morphological operation-based data collection algorithm

2017 ◽  
Vol 13 (7) ◽  
pp. 155014771771759 ◽  
Author(s):  
Yalin Nie ◽  
Haijun Wang ◽  
Yujie Qin ◽  
Zeyu Sun

When monitoring the environment with wireless sensor networks, the data sensed by the nodes within event backbone regions can adequately represent the events. As a result, identifying event backbone regions is a key issue for wireless sensor networks. With this aim, we propose a distributed and morphological operation-based data collection algorithm. Inspired by the use of morphological erosion and dilation on binary images, the proposed distributed and morphological operation-based data collection algorithm calculates the structuring neighbors of each node based on the structuring element, and it produces an event-monitoring map of structuring neighbors with less cost and then determines whether to erode or not. The remaining nodes that are not eroded become the event backbone nodes and send their sensing data. Moreover, according to the event backbone regions, the sink can approximately recover the complete event regions by the dilation operation. The algorithm analysis and experimental results show that the proposed algorithm can lead to lower overhead, decrease the amount of transmitted data, prolong the network lifetime, and rapidly recover event regions.

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2487 ◽  
Author(s):  
Guorui Li ◽  
Haobo Chen ◽  
Sancheng Peng ◽  
Xinguang Li ◽  
Cong Wang ◽  
...  

In recent years, energy-efficient data collection has evolved into the core problem in the resource-constrained Wireless Sensor Networks (WSNs). Different from existing data collection models in WSNs, we propose a collaborative data collection scheme based on optimal clustering to collect the sensed data in an energy-efficient and load-balanced manner. After dividing the data collection process into the intra-cluster data collection step and the inter-cluster data collection step, we model the optimal clustering problem as a separable convex optimization problem and solve it to obtain the analytical solutions of the optimal clustering size and the optimal data transmission radius. Then, we design a Cluster Heads (CHs)-linking algorithm based on the pseudo Hilbert curve to build a CH chain with the goal of collecting the compressed sensed data among CHs in an accumulative way. Furthermore, we also design a distributed cluster-constructing algorithm to construct the clusters around the virtual CHs in a distributed manner. The experimental results show that the proposed method not only reduces the total energy consumption and prolongs the network lifetime, but also effectively balances the distribution of energy consumption among CHs. By comparing it o the existing compression-based and non-compression-based data collection schemes, the average reductions of energy consumption are 17.9% and 67.9%, respectively. Furthermore, the average network lifetime extends no less than 20-times under the same comparison.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2627 ◽  
Author(s):  
Weimin Wen ◽  
Chih-Yung Chang ◽  
Shenghui Zhao ◽  
Cuijuan Shang

Data collection problems have received much attention in recent years. Many data collection algorithms that constructed a path and adopted one or more mobile sinks to collect data along the paths have been proposed in wireless sensor networks (WSNs). However, the efficiency of the established paths still can be improved. This paper proposes a cooperative data collection algorithm (CDCA), which aims to prolong the network lifetime of the given WSNs. The CDCA initially partitions the n sensor nodes into k groups and assigns each mobile sink acting as the local mobile sink to collect data generated by the sensors of each group. Then the CDCA selects an appropriate set of data collection points in each group and establishes a separate path passing through all the data collection points in each group. Finally, a global path is constructed and the rendezvous time points and the speed of each mobile sink are arranged for collecting data from k local mobile sinks to the global mobile sink. Performance evaluations reveal that the proposed CDCA outperforms the related works in terms of rendezvous time, network lifetime, fairness index as well as efficiency index.


Author(s):  
Omkar Singh ◽  
Vinay Rishiwal

Background & Objective: Wireless Sensor Network (WSN) consist of huge number of tiny senor nodes. WSN collects environmental data and sends to the base station through multi-hop wireless communication. QoS is the salient aspect in wireless sensor networks that satisfies end-to-end QoS requirement on different parameters such as energy, network lifetime, packets delivery ratio and delay. Among them Energy consumption is the most important and challenging factor in WSN, since the senor nodes are made by battery reserved that tends towards life time of sensor networks. Methods: In this work an Improve-Energy Aware Multi-hop Multi-path Hierarchy (I-EAMMH) QoS based routing approach has been proposed and evaluated that reduces energy consumption and delivers data packets within time by selecting optimum cost path among discovered routes which extends network life time. Results and Conclusion: Simulation has been done in MATLAB on varying number of rounds 400- 2000 to checked the performance of proposed approach. I-EAMMH is compared with existing routing protocols namely EAMMH and LEACH and performs better in terms of end-to-end-delay, packet delivery ratio, as well as reduces the energy consumption 13%-19% and prolongs network lifetime 9%- 14%.


Sign in / Sign up

Export Citation Format

Share Document