Robust Two-Stage Filtering for INS/Gravity Matching Passive Integrated Navigation Systems

2021 ◽  
pp. 1-1
Author(s):  
Kaixin Luo ◽  
Shaokun Cai ◽  
Ruihang Yu ◽  
Juliang Cao ◽  
Yan Guo
2016 ◽  
Vol 70 (2) ◽  
pp. 262-262
Author(s):  
Hongsong Zhao ◽  
Lingjuan Miao ◽  
Haijun Shao

2016 ◽  
Vol 70 (2) ◽  
pp. 242-261 ◽  
Author(s):  
Hongsong Zhao ◽  
Lingjuan Miao ◽  
Haijun Shao

In Strapdown Inertial Navigation System (SINS)/Odometer (OD) integrated navigation systems, OD scale factor errors change with roadways and vehicle loads. In addition, the random noises of gyros and accelerometers tend to vary with time. These factors may cause the Kalman filter to be degraded or even diverge. To address this problem and reduce the computation load, an Adaptive Two-stage Kalman Filter (ATKF) for SINS/OD integrated navigation systems is proposed. In the Two-stage Kalman Filter (TKF), only the innovation in the bias estimator is a white noise sequence with zero-mean while the innovation in the bias-free estimator is not zero-mean. Based on this fact, a novel algorithm for computing adaptive factors is presented. The proposed ATKF is evaluated in a SINS/OD integrated navigation system, and the simulation results show that it is effective in estimating the change of the OD scale factor error and robust to the varying process noises. A real experiment is carried out to further validate the performance of the proposed algorithm.


2020 ◽  
pp. 1-17
Author(s):  
Haiying Liu ◽  
Jingqi Wang ◽  
Jianxin Feng ◽  
Xinyao Wang

Abstract Visual–Inertial Navigation Systems (VINS) plays an important role in many navigation applications. In order to improve the performance of VINS, a new visual/inertial integrated navigation method, named Sliding-Window Factor Graph optimised algorithm with Dynamic prior information (DSWFG), is proposed. To bound computational complexity, the algorithm limits the scale of data operations through sliding windows, and constructs the states to be optimised in the window with factor graph; at the same time, the prior information for sliding windows is set dynamically to maintain interframe constraints and ensure the accuracy of the state estimation after optimisation. First, the dynamic model of vehicle and the observation equation of VINS are introduced. Next, as a contrast, an Invariant Extended Kalman Filter (InEKF) is constructed. Then, the DSWFG algorithm is described in detail. Finally, based on the test data, the comparison experiments of Extended Kalman Filter (EKF), InEKF and DSWFG algorithms in different motion scenes are presented. The results show that the new method can achieve superior accuracy and stability in almost all motion scenes.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2922
Author(s):  
Fan Zhang ◽  
Ye Wang ◽  
Yanbin Gao

Fault detection and identification are vital for guaranteeing the precision and reliability of tightly coupled inertial navigation system (INS)/global navigation satellite system (GNSS)-integrated navigation systems. A variance shift outlier model (VSOM) was employed to detect faults in the raw pseudo-range data in this paper. The measurements were partially excluded or included in the estimation process depending on the size of the associated shift in the variance. As an objective measure, likelihood ratio and score test statistics were used to determine whether the measurements inflated variance and were deemed to be faulty. The VSOM is appealing because the down-weighting of faulty measurements with the proper weighting factors in the analysis automatically becomes part of the estimation procedure instead of deletion. A parametric bootstrap procedure for significance assessment and multiple testing to identify faults in the VSOM is proposed. The results show that VSOM was validated through field tests, and it works well when single or multiple faults exist in GNSS measurements.


2012 ◽  
Vol 245 ◽  
pp. 323-329 ◽  
Author(s):  
Muhammad Ushaq ◽  
Jian Cheng Fang

Inertial navigation systems exhibit position errors that tend to grow with time in an unbounded mode. This degradation is due, in part, to errors in the initialization of the inertial measurement unit and inertial sensor imperfections such as accelerometer biases and gyroscope drifts. Mitigation to this growth and bounding the errors is to update the inertial navigation system periodically with external position (and/or velocity, attitude) fixes. The synergistic effect is obtained through external measurements updating the inertial navigation system using Kalman filter algorithm. It is a natural requirement that the inertial data and data from the external aids be combined in an optimal and efficient manner. In this paper an efficient method for integration of Strapdown Inertia Navigation System (SINS), Global Positioning System (GPS) and Doppler radar is presented using a centralized linear Kalman filter by treating vector measurements with uncorrelated errors as scalars. Two main advantages have been obtained with this improved scheme. First is the reduced computation time as the number of arithmetic computation required for processing a vector as successive scalar measurements is significantly less than the corresponding number of operations for vector measurement processing. Second advantage is the improved numerical accuracy as avoiding matrix inversion in the implementation of covariance equations improves the robustness of the covariance computations against round off errors.


Sign in / Sign up

Export Citation Format

Share Document