Retrieving Hurricane Wind Speed From Dominant Wave Parameters

Author(s):  
Paul A. Hwang ◽  
Xiaofeng Li ◽  
Biao Zhang
Author(s):  
Fedor Gippius ◽  
Fedor Gippius ◽  
Stanislav Myslenkov ◽  
Stanislav Myslenkov ◽  
Elena Stoliarova ◽  
...  

This study is focused on the alterations and typical features of the wind wave climate of the Black Sea’s coastal waters since 1979 till nowadays. Wind wave parameters were calculated by means of the 3rd-generation numerical spectral wind wave model SWAN, which is widely used on various spatial scales – both coastal waters and open seas. Data on wind speed and direction from the NCEP CFSR reanalysis were used as forcing. The computations were performed on an unstructured computational grid with cell size depending on the distance from the shoreline. Modeling results were applied to evaluate the main characteristics of the wind wave in various coastal areas of the sea.


2013 ◽  
Vol 28 (1) ◽  
pp. 159-174 ◽  
Author(s):  
Craig Miller ◽  
Michael Gibbons ◽  
Kyle Beatty ◽  
Auguste Boissonnade

Abstract In this study the impacts of the topography of Bermuda on the damage patterns observed following the passage of Hurricane Fabian over the island on 5 September 2003 are considered. Using a linearized model of atmospheric boundary layer flow over low-slope topography that also incorporates a model for changes of surface roughness, sets of directionally dependent wind speed adjustment factors were calculated for the island of Bermuda. These factors were then used in combination with a time-stepping model for the open water wind field of Hurricane Fabian derived from the Hurricane Research Division Real-Time Hurricane Wind Analysis System (H*Wind) surface wind analyses to calculate the maximum 1-min mean wind speed at locations across the island for the following conditions: open water, roughness changes only, and topography and roughness changes combined. Comparison of the modeled 1-min mean wind speeds and directions with observations from a site on the southeast coast of Bermuda showed good agreement between the two sets of values. Maximum open water wind speeds across the entire island showed very little variation and were of category 2 strength on the Saffir–Simpson scale. While the effects of surface roughness changes on the modeled wind speeds showed very little correlation with the observed damage, the effect of the underlying topography led to maximum modeled wind speeds of category 4 strength being reached in highly localized areas on the island. Furthermore, the observed damage was found to be very well correlated with these regions of topographically enhanced wind speeds, with a very clear trend of increasing damage with increasing wind speeds.


Eos ◽  
2000 ◽  
Vol 81 (38) ◽  
pp. 433 ◽  
Author(s):  
Richard J. Mumane ◽  
Chris Barton ◽  
Eric Collins ◽  
Jeffrey Donnelly ◽  
James Eisner ◽  
...  
Keyword(s):  

2016 ◽  
Vol 46 (9) ◽  
pp. 2605-2621 ◽  
Author(s):  
Paul A. Hwang ◽  
Edward J. Walsh

AbstractFor wind-generated waves, the wind-wave triplets (reference wind speed, significant wave height, and spectral peak wave period) are intimately connected through the fetch- or duration-limited wave growth functions. The full set of the triplets can be obtained knowing only one of the three, together with the input of fetch (duration) information using the pair of fetch-limited (duration limited) wave growth functions. The air–sea energy and momentum exchanges are functions of the wind-wave triplets, and they can be quantified with the wind-wave growth functions. Previous studies have shown that the wave development inside hurricanes follows essentially the same growth functions established for steady wind forcing conditions. This paper presents the analysis of wind-wave triplets collected inside Hurricane Bonnie 1998 at category 2 stage along 10 transects radiating from the hurricane center. A fetch model is formulated for any location inside the hurricane. Applying the fetch model to the 2D hurricane wind field, the detailed spatial distribution of the wave field and the associated energy and momentum exchanges inside the hurricane are investigated. For the case studied, the energy and momentum exchanges display two local maxima resulting from different weightings of wave age and wind speed. Referenced to the hurricane heading, the exchanges on the right half plane of the hurricane are much stronger than those on the left half plane. Integrated over the hurricane coverage area, the right-to-left ratio is about 3:1 for both energy and momentum exchanges. Computed exchange rates with and without considering wave properties differ significantly.


2017 ◽  
Vol 477 (1) ◽  
pp. 1373-1378 ◽  
Author(s):  
Yu. I. Troitskaya ◽  
O. S. Ermakova ◽  
A. A. Kandaurov ◽  
D. S. Kozlov ◽  
D. A. Sergeev ◽  
...  

2012 ◽  
Vol 50 (1) ◽  
pp. 180-192 ◽  
Author(s):  
Ruba A. Amarin ◽  
W. Linwood Jones ◽  
Salem Fawwaz El-Nimri ◽  
James W. Johnson ◽  
Christopher S. Ruf ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document