scholarly journals Model estimates hurricane wind speed probabilities

Eos ◽  
2000 ◽  
Vol 81 (38) ◽  
pp. 433 ◽  
Author(s):  
Richard J. Mumane ◽  
Chris Barton ◽  
Eric Collins ◽  
Jeffrey Donnelly ◽  
James Eisner ◽  
...  
Keyword(s):  
2013 ◽  
Vol 28 (1) ◽  
pp. 159-174 ◽  
Author(s):  
Craig Miller ◽  
Michael Gibbons ◽  
Kyle Beatty ◽  
Auguste Boissonnade

Abstract In this study the impacts of the topography of Bermuda on the damage patterns observed following the passage of Hurricane Fabian over the island on 5 September 2003 are considered. Using a linearized model of atmospheric boundary layer flow over low-slope topography that also incorporates a model for changes of surface roughness, sets of directionally dependent wind speed adjustment factors were calculated for the island of Bermuda. These factors were then used in combination with a time-stepping model for the open water wind field of Hurricane Fabian derived from the Hurricane Research Division Real-Time Hurricane Wind Analysis System (H*Wind) surface wind analyses to calculate the maximum 1-min mean wind speed at locations across the island for the following conditions: open water, roughness changes only, and topography and roughness changes combined. Comparison of the modeled 1-min mean wind speeds and directions with observations from a site on the southeast coast of Bermuda showed good agreement between the two sets of values. Maximum open water wind speeds across the entire island showed very little variation and were of category 2 strength on the Saffir–Simpson scale. While the effects of surface roughness changes on the modeled wind speeds showed very little correlation with the observed damage, the effect of the underlying topography led to maximum modeled wind speeds of category 4 strength being reached in highly localized areas on the island. Furthermore, the observed damage was found to be very well correlated with these regions of topographically enhanced wind speeds, with a very clear trend of increasing damage with increasing wind speeds.


2016 ◽  
Vol 46 (9) ◽  
pp. 2605-2621 ◽  
Author(s):  
Paul A. Hwang ◽  
Edward J. Walsh

AbstractFor wind-generated waves, the wind-wave triplets (reference wind speed, significant wave height, and spectral peak wave period) are intimately connected through the fetch- or duration-limited wave growth functions. The full set of the triplets can be obtained knowing only one of the three, together with the input of fetch (duration) information using the pair of fetch-limited (duration limited) wave growth functions. The air–sea energy and momentum exchanges are functions of the wind-wave triplets, and they can be quantified with the wind-wave growth functions. Previous studies have shown that the wave development inside hurricanes follows essentially the same growth functions established for steady wind forcing conditions. This paper presents the analysis of wind-wave triplets collected inside Hurricane Bonnie 1998 at category 2 stage along 10 transects radiating from the hurricane center. A fetch model is formulated for any location inside the hurricane. Applying the fetch model to the 2D hurricane wind field, the detailed spatial distribution of the wave field and the associated energy and momentum exchanges inside the hurricane are investigated. For the case studied, the energy and momentum exchanges display two local maxima resulting from different weightings of wave age and wind speed. Referenced to the hurricane heading, the exchanges on the right half plane of the hurricane are much stronger than those on the left half plane. Integrated over the hurricane coverage area, the right-to-left ratio is about 3:1 for both energy and momentum exchanges. Computed exchange rates with and without considering wave properties differ significantly.


2017 ◽  
Vol 477 (1) ◽  
pp. 1373-1378 ◽  
Author(s):  
Yu. I. Troitskaya ◽  
O. S. Ermakova ◽  
A. A. Kandaurov ◽  
D. S. Kozlov ◽  
D. A. Sergeev ◽  
...  

2012 ◽  
Vol 50 (1) ◽  
pp. 180-192 ◽  
Author(s):  
Ruba A. Amarin ◽  
W. Linwood Jones ◽  
Salem Fawwaz El-Nimri ◽  
James W. Johnson ◽  
Christopher S. Ruf ◽  
...  
Keyword(s):  

2014 ◽  
Vol 40 (5) ◽  
Author(s):  
Warren Leigh

Pine plantations are prone to stem breakage due to high cyclic stress levels associated with hurricane force winds. Stress analytical and finite element simulation models were constructed of a representative profile of a (Sitka) Picea sitchensis tree. The profile surface stress (S) was determined due to the combined load of tree self-weight and hurricane wind speed. The results were complemented by reference to two other studies by other researchers that investigated the impact of fatigue cycles on failure (N) of pine wood and tree sway cycles to present a stem fatigue life prediction. The position of maximum surface profile stress and trunk fracture initiation location was ascertained from a non-uniform stress response. No stress uniformity along the trunk profile was observed for any wind-load case examined. The analytical model and finite element analysis of the P. sitchensis tree trunk profile revealed a statically adequate strength reserve factor of 1.4, which suggested another mode of failure was responsible. Fatigue life failure prediction was examined under cyclic and same-stress amplitude related to the hurricane wind speed of 33 m s-1. Predicted trunk fracture occurred in 2.6 hours, which dramatically reduced to two minutes with an increase in wind speed of only 1 m s-1. The calculated exposure time was similar to that recorded during Hurricane Hugo’s transit in 1989. The time-to-failure prediction obtained by the method of analysis provided in this study seemed plausible, and that the profile associated with the P. sitchensis tree would suffer trunk breakage by low cycle fatigue failure.


Sign in / Sign up

Export Citation Format

Share Document