Numerical analysis and design of a new traveling-wave photodetector with an asymmetric I-layer cross section

2003 ◽  
Vol 9 (3) ◽  
pp. 770-775 ◽  
Author(s):  
Soon-Cheol Kong ◽  
Seong-Hae Ok ◽  
Young-Wan Choi ◽  
Joong-Seon Choe ◽  
Yong-Hwan Kwon ◽  
...  
2014 ◽  
Vol 116 (21) ◽  
pp. 214503 ◽  
Author(s):  
F. Chiadini ◽  
A. Diovisalvi ◽  
V. Fiumara ◽  
A. Scaglione

2019 ◽  
Vol 140 ◽  
pp. 02013
Author(s):  
Dmitry Bogdanov ◽  
Yury Boldyrev ◽  
Pavel Cvetkov ◽  
Oleg Klyavin ◽  
Ilya Davydov ◽  
...  

The article considers the problem of optimal design of car body elements (longitudinal members) according to the chosen criteria. Both the questions of formulation of the optimization task and individual problems of its solution are studied. The mathematical statement of the problem is considered. Thus, the most attention is given to consideration of realisation of used numerical procedure of optimization. The system of numerical calculations is based on the most widely spread software systems for engineering analysis and design. The developed scripts on Python programming language are briefly considered. Results of optimization of longitudinal members of the car are given.


Author(s):  
H. Ashrafiuon ◽  
N. K. Mani

Abstract The symbolic computing system MACSYMA is used to automatically generate the explicit equations necessary to represent the kinematic constraints and system dynamics and to compute the design sensitivities for optimal design of any multibody system. The logic to construct system matrices and vectors involved in the analysis and design equations is implemented as general purpose MACSYMA programs. All necessary manipulations are performed by MACSYMA and the equations are output as FORTRAN statements that can be compiled and executed. This approach results in a computational saving of up to 95% compared to using a general purpose programs. The approach is general in nature and is applicable to any multibody system. Examples are presented to demonstrate the effectiveness of the approach.


Sign in / Sign up

Export Citation Format

Share Document