A Low Cost System to Optimize Pesticide Application Based on Mobile Technologies and Computer Vision

Author(s):  
Felipe Weber ◽  
Gabrielle Rosa ◽  
Fabio Terra ◽  
Andre Oldoni ◽  
Paulo Drews
2015 ◽  
Vol 76 (12) ◽  
Author(s):  
Por Jing Zhao ◽  
Shafriza Nisha Basah ◽  
Shazmin Aniza Abdul Shukor

High demand of building construction has been taking places in the major city of Malaysia. However, despite this magnificent development, the lack of proper maintenance has caused a large portion of these properties deteriorated over time. The implementation of the project - Automated Detection of Physical Defect via Computer Vision - is a low cost system that helps to inspect the wall condition using Kinect camera. The system is able to classify the types of physical defects -crack and hole - and state its level of severity.The system uses artificial neural network as the image classifier due to its reliability and consistency. The validity of the system is shown using experiments on synthetic and real image data. This automated physical defect detection could detect building defect early, quickly, and easily, which results in cost saving and extending building life span. 


2007 ◽  
Vol 40 (11) ◽  
pp. 53
Author(s):  
BRUCE K. DIXON
Keyword(s):  
Low Cost ◽  

Author(s):  
Ramin Sattari ◽  
Stephan Barcikowski ◽  
Thomas Püster ◽  
Andreas Ostendorf ◽  
Heinz Haferkamp

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 343
Author(s):  
Kim Bjerge ◽  
Jakob Bonde Nielsen ◽  
Martin Videbæk Sepstrup ◽  
Flemming Helsing-Nielsen ◽  
Toke Thomas Høye

Insect monitoring methods are typically very time-consuming and involve substantial investment in species identification following manual trapping in the field. Insect traps are often only serviced weekly, resulting in low temporal resolution of the monitoring data, which hampers the ecological interpretation. This paper presents a portable computer vision system capable of attracting and detecting live insects. More specifically, the paper proposes detection and classification of species by recording images of live individuals attracted to a light trap. An Automated Moth Trap (AMT) with multiple light sources and a camera was designed to attract and monitor live insects during twilight and night hours. A computer vision algorithm referred to as Moth Classification and Counting (MCC), based on deep learning analysis of the captured images, tracked and counted the number of insects and identified moth species. Observations over 48 nights resulted in the capture of more than 250,000 images with an average of 5675 images per night. A customized convolutional neural network was trained on 2000 labeled images of live moths represented by eight different classes, achieving a high validation F1-score of 0.93. The algorithm measured an average classification and tracking F1-score of 0.71 and a tracking detection rate of 0.79. Overall, the proposed computer vision system and algorithm showed promising results as a low-cost solution for non-destructive and automatic monitoring of moths.


2021 ◽  
Vol 1826 (1) ◽  
pp. 012082
Author(s):  
G F Bassous ◽  
R F Calili ◽  
C R H Barbosa

Author(s):  
Wilver Auccahuasi ◽  
Mónica Diaz ◽  
Fernando Sernaque ◽  
Edward Flores ◽  
Justiniano Aybar ◽  
...  

2020 ◽  
pp. 1-15
Author(s):  
Jorge Tadeu Fim Rosas ◽  
Francisco de Assis de Carvalho Pinto ◽  
Daniel Marçal de Queiroz ◽  
Flora Maria de Melo Villar ◽  
Rodrigo Nogueira Martins ◽  
...  

2020 ◽  
Vol 196 ◽  
pp. 105705 ◽  
Author(s):  
S. Summa ◽  
G. Tartarisco ◽  
M. Favetta ◽  
A. Buzachis ◽  
A. Romano ◽  
...  
Keyword(s):  
Low Cost ◽  

1978 ◽  
Vol 2 (1) ◽  
pp. 6
Author(s):  
Dave Oppenheim
Keyword(s):  
Low Cost ◽  

Sign in / Sign up

Export Citation Format

Share Document