scholarly journals A Low-cost System for High-frequency Solar Imagery and Power Data Acquisition

2021 ◽  
Vol 1826 (1) ◽  
pp. 012082
Author(s):  
G F Bassous ◽  
R F Calili ◽  
C R H Barbosa
Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 524 ◽  
Author(s):  
Ciro Moreno ◽  
Alejandro González ◽  
José Luis Olazagoitia ◽  
Jordi Vinolas

This article presents a novel and reliable low-cost data acquisition solution for high frequency and real-time applications in vehicular dynamics. Data acquisition systems for highly dynamic systems based on low-cost platforms face different challenges such as a constrained data retrieval rate. Basic data reading functions in these platforms are inefficient and, when used, they limit electronics acquisition rate capabilities. This paper explains a new low-cost, modular and open platform to read different types of sensors at high speed rates. Conventional reading functions are avoided to speed up acquisition rate, but this negatively affects data reliability of the system. To solve this and exploit higher data managing rates, a number of custom secure layers are implemented to secure a reliable acquisition. This paper describes the new low-cost electronics developed for high rate acquisition applications and inspects its performance and robustness against the introduction of an increasing number of sensors connected to the board. In most cases, acquisition rates of the system are duplicated using this new solution.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6191
Author(s):  
Seyedmilad Komarizadehasl ◽  
Behnam Mobaraki ◽  
Haiying Ma ◽  
Jose-Antonio Lozano-Galant ◽  
Jose Turmo

Nowadays, engineers are widely using accelerometers to record the vibration of structures for structural verification purposes. The main obstacle for using these data acquisition systems is their high cost, which limits its use to unique structures with a relatively high structural health monitoring budget. In this paper, a Cost Hyper-Efficient Arduino Product (CHEAP) has been developed to accurately measure structural accelerations. CHEAP is a system that is composed of five low-cost accelerometers that are connected to an Arduino microcontroller as their data acquisition system. Test results show that CHEAP not only has a significantly lower price (14 times cheaper in the worst-case scenario) compared with other systems used for comparison but also shows better accuracy on low frequencies for low acceleration amplitudes. Moreover, the final output results of Fast Fourier Transformation (FFT) assessments showed a better observable resolution for CHEAP than the studied control systems.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 787 ◽  
Author(s):  
Xingyun Zhang ◽  
Cunjun Ruan ◽  
Tanveer Haq ◽  
Kanglong Chen

This paper describes a low-cost, small size, and high-sensitivity microwave sensor using a Complementary Circular Spiral Resonator (CCSR), which operates at around 2.4 GHz, for identifying liquid samples and determining their dielectric constants. The proposed sensor was fabricated and tested to effectively identify different liquids commonly used in daily life and determine the concentrations of various ethanol–water mixtures at by measuring the resonant frequency of the CCSR. Using acrylic paint, a square channel was drawn at the most sensitive position of the microwave sensor to ensure accuracy of the experiment. To estimate the dielectric constants of the liquids under test, an approximate model was established using a High-Frequency Simulator Structure (HFSS). The results obtained agree very well with the existing data. Two parabolic equations were calculated and fitted to identify unknown liquids and determine the concentrations of ethanol–water mixtures. Thus, our microwave sensor provides a method with high sensitivity and low consumption of material for liquid monitoring and determination, which proves the feasibility and broad prospect of this low-cost system in industrial application.


2020 ◽  
Author(s):  
Daniel Vaquerizo Hernández ◽  
Pablo Munoz ◽  
David Fernandez Barrero ◽  
Maria Dolores R-Moreno

Abstract Measuring the consumption of electronic devices is a difficult and sensitive task. Data AcQuisition (DAQ) systems are often used to determine such consumption. In theory, measuring energy consumption is straightforward, just by acquiring current and voltage signals we can determine the consumption. However, a number of issues arise when a ne analysis is required. The main problem is that sampling frequencies have to be high enough to detect variations in the assessed signals over time. In that regard, some popular DAQ systems are based on RISC ARM processors for microcontrollers combined with Analog-Digital Converters (ADC) to meet the frequency acquisition requirements. The efficient use of the Direct Memory Access (DMA) modules combined with pipelined processing in the microcontroller allows to improve the sample rate overcoming the processing time and the internal communication protocol limitations. This paper presents a novel approach for high frequency energy measurement composed of a DMA rate improvement (data acquisition logic), a data processing logic and a low-cost hardware. The contribution of the paper is the combination of a double buffered signal acquisition mechanism and an algorithm that computes the device's energy consumption using parallel data processing. The combination of these elements enables a high-frequency (continuous) energy consumption measurement of an electronic device, improving the accuracy and reducing the cost of existing systems. We have validated our approach by measuring the energy consumed by basic circuits and Wireless Sensors Networks (WSNs) motes. The results indicate that the energy measurement error is less than 5%, and that the proposed method is suitable to measure WSN motes even during sleep cycles, enabling a better characterization of their consumption prole.


Author(s):  
S. Kossieris ◽  
O. Kourounioti ◽  
P. Agrafiotis ◽  
A. Georgopoulos

In this paper, a developed low-cost system is described, which aims to facilitate 3D documentation fast and reliably by acquiring the necessary data in outdoor environment for the 3D documentation of façades especially in the case of very narrow streets. In particular, it provides a viable solution for buildings up to 8-10m high and streets as narrow as 2m or even less. In cases like that, it is practically impossible or highly time-consuming to acquire images in a conventional way. This practice would lead to a huge number of images and long processing times. The developed system was tested in the narrow streets of a medieval village on the Greek island of Chios. There, in order to by-pass the problem of short taking distances, it was thought to use high definition action cameras together with a 360˚ camera, which are usually provided with very wide-angle lenses and are capable of acquiring images, of high definition, are rather cheap and, most importantly, extremely light. Results suggest that the system can perform fast 3D data acquisition adequate for deliverables of high quality.


2007 ◽  
Vol 40 (11) ◽  
pp. 53
Author(s):  
BRUCE K. DIXON
Keyword(s):  
Low Cost ◽  

Author(s):  
Ramin Sattari ◽  
Stephan Barcikowski ◽  
Thomas Püster ◽  
Andreas Ostendorf ◽  
Heinz Haferkamp

Author(s):  
Cheyma BARKA ◽  
Hanen MESSAOUDI-ABID ◽  
Houda BEN ATTIA SETTHOM ◽  
Afef BENNANI-BEN ABDELGHANI ◽  
Ilhem SLAMA-BELKHODJA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document