Theory and Generation of Circularly Polarized Waves by Antenna Arrays With $ {N} $-Fold Rotational Symmetry

2011 ◽  
Vol 10 ◽  
pp. 1441-1444 ◽  
Author(s):  
M. E. Marhic ◽  
A. Mehta ◽  
A. Pal
1971 ◽  
Vol 5 (1) ◽  
pp. 107-113 ◽  
Author(s):  
C. S. Chen

An infinite, inhomogeneous electron plasma driven by a spatially uniform oscillating electric field is investigated. The multi-time perturbation method is used to analyze possible parametric excitations of transverse waves and to evaluate their growth rates. It is shown that there exist subharmonic excitations of: (1) a pair of transverse waves in an unmagnetized plasma and (2) a pair of one right and one left circularly polarized wave in a magnetoplasma. Additionally, parametric excitation of two right or two left circularly polarized waves with different frequencies can exist in a magnetoplasma. The subharmonic excitations are impossible whenever the density gradient and the applied electric field are perpendicular. However, parametric excitation is possible with all configurations.


2016 ◽  
Vol 15 ◽  
pp. 52-55 ◽  
Author(s):  
Yuhai Jiang ◽  
Wen Geyi ◽  
Lingsheng Yang ◽  
Hucheng Sun

1973 ◽  
Vol 51 (23) ◽  
pp. 2495-2497
Author(s):  
C. K. Campbell

With the aid of a phasor diagram it is shown that the scalar effective permeability μe = (μ2 − K2)/μ of a parallel-plate longitudinally magnetized microwave ferrite phase shifter may be simply obtained in terms of four circularly polarized waves relating to the permeability tensor eigenvalues μ + K and μ − K.


2017 ◽  
Vol 31 (13) ◽  
pp. 1277-1288 ◽  
Author(s):  
Omar Elizarraras ◽  
Marco A. Panduro ◽  
Aldo Mendez ◽  
Alberto Reyna ◽  
David H. Covarrubias

2014 ◽  
Vol 56 (5) ◽  
Author(s):  
Wang Shun ◽  
Chen Ziwei ◽  
Zhang Feng ◽  
Gong Zhaoqian ◽  
Li Jutao ◽  
...  

<p><strong><em></em></strong>Separation for O wave and X wave is a very important job in interpretation of ionograms, which is premise for automatic scaling. In this paper, a new digital method for separating O wave and X wave is presented, based on a numerical synthesizing technique, which is different from using image recognition to separate trace O and trace X in the ionograms, and from using the electrical method to synthesize and detect circularly polarized waves. By replacing analog phase shifters and switches in existing ionosonde with digital phase shifters with different initial phase, 0°, +90°, −90°, circularly polarized waves are synthesized digitally within the range of 1-30 MHz, which eliminates the nonlinearity and expands the bandwidth of the ionosonde, and there is no need to switch the analog switches continuously. The new method has been successfully applied to CAS-DIS ionosonde and testing results show that the new digital method is capable of separating O wave and X wave well.</p>


2011 ◽  
Vol 19 (3) ◽  
Author(s):  
C. Zenkova ◽  
M. Gorsky ◽  
N. Gorodynska

AbstractThe use of the method of field polarization modulation for defining the degree of coherence of circularly polarized waves is offered. The role of the reference circularly polarized wave in transforming the spatial distribution of polarization into the depth of visibility modulation of the resulting distribution, which can be metrologically estimated and analyzed, is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document