Wireless Power Transfer System Based on Magnetic Dipole Coupling With High Permittivity Metamaterials

2019 ◽  
Vol 18 (9) ◽  
pp. 1823-1827 ◽  
Author(s):  
Tarakeswar Shaw ◽  
Debasis Mitra
2021 ◽  
Vol 2015 (1) ◽  
pp. 012170
Author(s):  
E Zanganeh ◽  
M Song ◽  
M Korobkov ◽  
A Evlyukhin ◽  
A Miroshnichenko ◽  
...  

Abstract The main challenge in near-field wireless power transfer systems is the increase of power transfer efficiency. It can be achieved by reducing ohmic or radiation losses of the resonators included in the system. In this paper, we propose and investigate numerically a non-radiating near-field wireless power transfer system based on transmitter and receiver implemented as dielectric disk resonators. The transmitter and receiver geometrical parameters are numerically optimized to operate at the frequency of non-radiating state of high refractive index dielectric resonators instead of magnetic dipole mode. Under the non-radiating state, we determine the frequency with almost zero radiation to the far-field. We numerically study the wireless power transfer efficiency as a function of operation distance between the transmitter and receiver and demonstrate that the higher efficiency compared to magnetic dipole mode can be achieved at non-radiating state for a fixed distance due to suppression of the radiation loss.


Sign in / Sign up

Export Citation Format

Share Document