dipole coupling
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 26)

H-INDEX

34
(FIVE YEARS 3)

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 445
Author(s):  
Mahi R. Singh

In this review article, we discuss the many-body interactions in plasmonic nanohybrids made of an ensemble of quantum emitters and metallic nanoparticles. A theory of the linear and nonlinear optical emission intensity was developed by using the many-body quantum mechanical density matrix method. The ensemble of quantum emitters and metallic nanoparticles interact with each other via the dipole-dipole interaction. Surfaces plasmon polaritons are located near to the surface of the metallic nanoparticles. We showed that the nonlinear Kerr intensity enhances due to the weak dipole-dipole coupling limits. On the other hand, in the strong dipole-dipole coupling limit, the single peak in the Kerr intensity splits into two peaks. The splitting of the Kerr spectrum is due to the creation of dressed states in the plasmonic nanohybrids within the strong dipole-dipole interaction. Further, we found that the Kerr nonlinearity is also enhanced due to the interaction between the surface plasmon polaritons and excitons of the quantum emitters. Next, we predicted the spontaneous decay rates are enhanced due to the dipole-dipole coupling. The enhancement of the Kerr intensity due to the surface plasmon polaritons can be used to fabricate nanosensors. The splitting of one peak (ON) two peaks (OFF) can be used to fabricate the nanoswitches for nanotechnology and nanomedical applications.


2020 ◽  
Vol 10 (20) ◽  
pp. 7150
Author(s):  
E. M. Khalil ◽  
Hashim M. Alshehri ◽  
A.-B. A. Mohamed ◽  
S. Abdel-Khalek ◽  
A.-S. F. Obada

This study analytically explored two coupled two-level atomic systems (TLAS) as two qubits interacting with two modes of an electromagnetic field (EMF) cavity via two-photon transitions in the presence of dipole–dipole interactions between the atoms and intrinsic damping. Using special unitary su(1,1) Lie algebra, the general solution of an intrinsic noise model is obtained when an EMF is initially in a generalized coherent state. We investigated the population inversion of two TLAS and the generated quantum coherence of some partitions (including the EMF, two TLAS, and TLAS–EMF). It is possible to generate quantum coherence (mixedness and entanglement) from the initial pure state. The robustness of the quantum coherence produced and the sudden appearance and disappearance of coherence depended not only on dipole–dipole coupling but also on the intrinsic noise rate. The growth of mixedness and entanglement may be enhanced by increasing dipole–dipole coupling, leading to more robustness against intrinsic noise.


2020 ◽  
Vol 22 (8) ◽  
pp. 083068 ◽  
Author(s):  
Gang Xu ◽  
Yan Li ◽  
Fei Gao ◽  
Hai-Ou Li ◽  
He Liu ◽  
...  

2020 ◽  
Vol 56 (7) ◽  
pp. 1-8 ◽  
Author(s):  
John A. Nance ◽  
Kawsher A. Roxy ◽  
Sanjukta Bhanja ◽  
Greg P. Carman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document