Partial Selective Mapping OFDM with Low Complexity IFFTs

2008 ◽  
Vol 12 (1) ◽  
pp. 4-6 ◽  
Author(s):  
A. Ghassemi ◽  
T.A. Gulliver
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Hefdhallah Sakran ◽  
Omar Nasr ◽  
Mona Shokair

Cognitive radio (CR) is considered nowadays as a strong candidate solution for the spectrum scarcity problem. On standards level, many cognitive radio standards have chosen Non-Contiguous Orthogonal Frequency Division Multiplexing (NC-OFDM) as their modulation scheme. Similar to OFDM, NC-OFDM suffers from the problem of having a high Peak to Average Power Ratio (PAPR). If not solved, either the transmitted signal will be distorted, which will cause interference to primary (licensed) users, or the effeciency of the power amplifier will be seriously degraded. The effect of the PAPR problem in NC-OFDM based cognitive radio networks is worse than normal OFDM systems. In this paper, we propose enhanced techniques to reduce the PAPR in NC-OFDM systems. We start by showing that combining two standard PAPR reduction techniques (interleaver-based and selective mapping) results in a lower PAPR than using them individually. Then, an “adaptive number of interleavers” will be proposed that achieves the same performance of conventional interleaver-based PAPR reduction while reducing the CPU time by 41.3%. Finally, adaptive joint interleaver with selective mapping is presented, and we show that it gives the same performance as conventional interleaver-based technique, with reduction in CPU time by a factor of 50.1%.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 31420-31431
Author(s):  
Biao Cai ◽  
Aijun Liu ◽  
Xiaohu Liang

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ridha Touhami ◽  
Djamal Slimani ◽  
Ayad Atiyah Abdulkafi ◽  
Yaseein Soubhi Hussein ◽  
Mohamad Yusoff Alias

AbstractOrthogonal frequency-division multiplexing technique (OFDM) has been adopted widely as a modulation technique for radio frequency (RF) and optical communication systems such as visible-light communication (VLC) due to its high spectral efficiency and low-complexity implementation. VLC-OFDM is recommended in 5 G mobile communication. However, VLC-OFDM suffer from the high peak to-average power ratio (PAPR). In this paper, a modified selective mapping (MSLM) method is applied to the proposed system followed by a new envelope scaling process for further reductions in PAPR of VLC-OFDM system. Simulation results show that the proposed method reduces the PAPR by about 6.8 and 1.7 dB comparing with the original signal and the traditional SLM with a number of rotation vector U = 8, respectively.


Sign in / Sign up

Export Citation Format

Share Document