ISRN Signal Processing
Latest Publications


TOTAL DOCUMENTS

84
(FIVE YEARS 0)

H-INDEX

11
(FIVE YEARS 0)

Published By Hindawi (International Scholarly Research Network)

2090-505x, 2090-5041

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Dongze Li ◽  
Xiang Li ◽  
Yongqiang Cheng ◽  
Yuliang Qin ◽  
Hongqiang Wang

Radar coincidence imaging is an instantaneous imaging technique which does not depend on the relative motion between targets and radars. High-resolution, fine-quality images can be obtained using a single pulse either for stationary targets or for complexly maneuvering ones. There are two image-reconstruction algorithms used for radar coincidence imaging, that is, the correlation method and the parameterized method. In comparison with the former, the parameterized method can achieve much higher resolution but is seriously sensitive to grid mismatch. In the presence of grid mismatch, neither of the two algorithms can obtain recognizable high-resolution images. The above problem largely limits the applicability of radar coincidence imaging in actual imaging scenes where grid mismatch generally exists. This paper proposes a joint correlation-parameterization algorithm, which uses the correlation method to estimate the grid-mismatch error and then iteratively modifies the results of the parameterized method. The proposed algorithm can achieve high resolution with fine imagery quality under the grid mismatch. Examples are provided to illustrate the improvement of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-18
Author(s):  
Mithilesh Kumar Jha ◽  
Brejesh Lall ◽  
Sumantra Dutta Roy

This paper proposes a statistically matched wavelet based textured image coding scheme for efficient representation of texture data in a compressive sensing (CS) frame work. Statistically matched wavelet based data representation causes most of the captured energy to be concentrated in the approximation subspace, while very little information remains in the detail subspace. We encode not the full-resolution statistically matched wavelet subband coefficients but only the approximation subband coefficients (LL) using standard image compression scheme like JPEG2000. The detail subband coefficients, that is, HL, LH, and HH, are jointly encoded in a compressive sensing framework. Compressive sensing technique has proved that it is possible to achieve a sampling rate lower than the Nyquist rate with acceptable reconstruction quality. The experimental results demonstrate that the proposed scheme can provide better PSNR and MOS with a similar compression ratio than the conventional DWT-based image compression schemes in a CS framework and other wavelet based texture synthesis schemes like HMT-3S.


2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Harbinder Singh ◽  
Vinay Kumar ◽  
Sunil Bhooshan

Many recent computational photography techniques play a significant role to avoid limitation of standard digital cameras to handle wide dynamic range of the real-world scenes, containing brightly and poorly illuminated areas. In many of these techniques, it is often desirable to fuse details from images captured at different exposure settings, while avoiding visual artifacts. In this paper we propose a novel technique for exposure fusion in which Weighted Least Squares (WLS) optimization framework is utilized for weight map refinement. Computationally simple texture features (i.e., detail layer extracted with the help of edge preserving filter) and color saturation measure are preferred for quickly generating weight maps to control the contribution from an input set of multiexposure images. Instead of employing intermediate High Dynamic Range (HDR) reconstruction and tone mapping steps, well-exposed fused image is generated for displaying on conventional display devices. A further advantage of the present technique is that it is well suited for multifocus image fusion. Simulation results are compared with a number of existing single resolution and multiresolution techniques to show the benefits of the proposed scheme for variety of cases.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mohamed A. Hankal ◽  
Islam A. Eshrah ◽  
Hazim Tawfik

Schemes for spectrum holes sensing for cognitive radio based on the estimation of the Stokes parameters of monochromatic and quasimonochromatic polarized electromagnetic waves are developed. Statistical information that includes the variations of the polarization state in both cases (present and absent) of Primary User (PU) is accounted for. A detector based on the fluctuation of the Stokes parameters is analyzed, and its performance is compared with that of energy detectors, which use only the scalar amplitude information to sense the PU signal. The cooperative spectrum sensing based on the polarization in which the reporting channels are noisy will be investigated. The cluster technique is proposed to reduce the bit error probability due to channel impairment. A closed-form expression for the polarization detection is derived using α-μ generalized fading model, which provides directly an expression for the special cases of Nakagami-m and Weibull models as well as their derivatives. These expressions are verified using simulation. The results show that the polarization spectrum sensing gives superior performance for a wide range of SNR over the conventional energy detection method.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Jagannath Nirmal ◽  
Suprava Patnaik ◽  
Mukesh Zaveri ◽  
Pramod Kachare

The complex cepstrum vocoder is used to modify the speaker specific characteristics of the source speaker speech to that of the target speaker speech. The low time and high time liftering are used to split the calculated cepstrum into the vocal tract and the source excitation parameters. The obtained mixed phase vocal tract and source excitation parameters with finite impulse response preserve the phase properties of the resynthesized speech frame. The radial basis function is explored to capture the nonlinear mapping function for modifying the complex cepstrum based real and imaginary components of the vocal tract and source excitation of the speech signal. The state-of-the-art Mel cepstrum envelope and the fundamental frequency (F0) are considered to represent the vocal tract and the source excitation of the speech frame, respectively. Radial basis function is used to capture and formulate the nonlinear relations between the Mel cepstrum envelope of the source and target speakers. Mean and standard deviation approach is employed to modify the fundamental frequency (F0). The Mel log spectral approximation filter is used to reconstruct the speech signal from the modified Mel cepstrum envelope and fundamental frequency. A comparison of the proposed complex cepstrum based model has been made with the state-of-the-art Mel Cepstrum Envelope based voice conversion model with objective and subjective evaluations. The evaluation measures reveal that the proposed complex cepstrum based voice conversion system approximate the converted speech signal with better accuracy than the model based on the Mel cepstrum envelope based voice conversion.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Piyush Kapoor ◽  
Sarabjeet Singh Bedi

2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Benjamin G. Salomon

In most missing samples problems, the signals are assumed to be bandlimited. That is, the signals are assumed to be sparsely approximated by a known subset of the discrete Fourier transform basis vectors. We discuss the recovery of missing samples when the signals can be sparsely approximated by an unknown subset of certain unitary basis vectors. We propose the use of the orthogonal matching pursuit to recover missing samples by sparse approximations.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yunbin Deng ◽  
Yu Zhong

User authentication using keystroke dynamics offers many advances in the domain of cyber security, including no extra hardware cost, continuous monitoring, and nonintrusiveness. Many algorithms have been proposed in the literature. Here, we introduce two new algorithms to the domain: the Gaussian mixture model with the universal background model (GMM-UBM) and the deep belief nets (DBN). Unlike most existing approaches, which only use genuine users’ data at training time, these two generative model-based approaches leverage data from background users to enhance the model’s discriminative capability without seeing the imposter’s data at training time. These two new algorithms make no assumption about the underlying probability distribution and are fast for training and testing. They can also be extended to free text use cases. Evaluations on the CMU keystroke dynamics benchmark dataset show over 58% reduction in the equal error rate over the best published approaches.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Zahra Khandan ◽  
Hadi Sadoghi Yazdi

Kernel-based neural network (KNN) is proposed as a neuron that is applicable in online learning with adaptive parameters. This neuron with adaptive kernel parameter can classify data accurately instead of using a multilayer error backpropagation neural network. The proposed method, whose heart is kernel least-mean-square, can reduce memory requirement with sparsification technique, and the kernel can adaptively spread. Our experiments will reveal that this method is much faster and more accurate than previous online learning algorithms.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Radu Matei

This paper proposes an analytical design method for two-dimensional square-shaped IIR filters. The designed 2D filters are adjustable since their bandwidth and orientation are specified by parameters appearing explicitly in the filter matrices. The design relies on a zero-phase low-pass 1D prototype filter. To this filter a frequency transformation is next applied, which yields a 2D filter with the desired square shape in the frequency plane. The proposed method combines the analytical approach with numerical approximations. Since the prototype transfer function is factorized into partial functions, the 2D filter also will be described by a factorized transfer function, which is an advantage in implementation.


Sign in / Sign up

Export Citation Format

Share Document