An Analytic Model for the Optimal Number of Relay Stations in Two-Hop Relay Networks

2013 ◽  
Vol 17 (2) ◽  
pp. 285-288 ◽  
Author(s):  
Zilong Jin ◽  
Weidong Su ◽  
Jinsung Cho ◽  
Een-Kee Hong
2017 ◽  
Vol 23 (6) ◽  
pp. 5246-5250
Author(s):  
A. S Khan ◽  
H Halikul ◽  
M. N Jambli ◽  
R Thangaveloo

Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 76 ◽  
Author(s):  
Hui Shi ◽  
Weiwei Yang ◽  
Dechuan Chen ◽  
Yunpeng Luo ◽  
Yueming Cai

This paper investigates secure communications of energy harvesting untrusted relay networks, where the destination assists jamming signal to prevent the untrusted relay from eavesdropping and to improve the forwarding ability of the energy constrained relay. Firstly, the source and the destination transmit the signals to the relay with maximal ratio transmission (MRT) technique or transmit antenna selection (TAS) technique. Then, the destination utilizes maximal ratio combining (MRC) technique or receive antenna selection (RAS) technique to receive the forwarded information. Therefore, four transmission and reception schemes are considered. For each scheme, the closed-form expressions of the secrecy outage probability (SOP) and the connection outage probability (COP) are derived. Besides, the effective secrecy throughput (EST) metric is analyzed to achieve a good tradeoff between security and reliability. In addition, the asymptotic performance of EST is also considered at the high signal-to-noise ratio (SNR). Finally, simulation results illustrate that: (1) the EST of the system with MRT and MRC scheme are superior to other schemes, however, in the high SNR regime, the EST of the system with MRT scheme is inferior to TAS; and (2) for the source node, there exists an optimal number of antennas to maximize the EST of the proposed schemes.


2013 ◽  
Vol 221 (3) ◽  
pp. 145-159 ◽  
Author(s):  
Gerard J. P. van Breukelen

This paper introduces optimal design of randomized experiments where individuals are nested within organizations, such as schools, health centers, or companies. The focus is on nested designs with two levels (organization, individual) and two treatment conditions (treated, control), with treatment assignment to organizations, or to individuals within organizations. For each type of assignment, a multilevel model is first presented for the analysis of a quantitative dependent variable or outcome. Simple equations are then given for the optimal sample size per level (number of organizations, number of individuals) as a function of the sampling cost and outcome variance at each level, with realistic examples. Next, it is explained how the equations can be applied if the dependent variable is dichotomous, or if there are covariates in the model, or if the effects of two treatment factors are studied in a factorial nested design, or if the dependent variable is repeatedly measured. Designs with three levels of nesting and the optimal number of repeated measures are briefly discussed, and the paper ends with a short discussion of robust design.


Sign in / Sign up

Export Citation Format

Share Document