Centralized Energy-Efficient Clustering Routing Protocol for Mobile Nodes in Wireless Sensor Networks

2019 ◽  
Vol 23 (7) ◽  
pp. 1215-1218 ◽  
Author(s):  
Jingxia Zhang ◽  
Ruqiang Yan
Author(s):  
Nandoori Srikanth ◽  
Muktyala Sivaganga Prasad

<p>Wireless Sensor Networks (WSNs) can extant the individual profits and suppleness with regard to low-power and economical quick deployment for numerous applications. WSNs are widely utilized in medical health care, environmental monitoring, emergencies and remote control areas. Introducing of mobile nodes in clusters is a traditional approach, to assemble the data from sensor nodes and forward to the Base station. Energy efficiency and lifetime improvements are key research areas from past few decades. In this research, to solve the energy limitation to upsurge the network lifetime, Energy efficient trust node based routing protocol is proposed. An experimental validation of framework is focused on Packet Delivery Ratio, network lifetime, throughput, energy consumption and network loss among all other challenges. This protocol assigns some high energy nodes as trusted nodes, and it decides the mobility of data collector.  The energy of mobile nodes, and sensor nodes can save up to a great extent by collecting data from trusted nodes based on their trustworthiness and energy efficiency.  The simulation outcome of our evaluation shows an improvement in all these parameters than existing clustering and Routing algorithms.<strong></strong></p>


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1515 ◽  
Author(s):  
Alma Rodríguez ◽  
Carolina Del-Valle-Soto ◽  
Ramiro Velázquez

The usage of wireless sensor devices in many applications, such as in the Internet of Things and monitoring in dangerous geographical spaces, has increased in recent years. However, sensor nodes have limited power, and battery replacement is not viable in most cases. Thus, energy savings in Wireless Sensor Networks (WSNs) is the primary concern in the design of efficient communication protocols. Therefore, a novel energy-efficient clustering routing protocol for WSNs based on Yellow Saddle Goatfish Algorithm (YSGA) is proposed. The protocol is intended to intensify the network lifetime by reducing energy consumption. The network considers a base station and a set of cluster heads in its cluster structure. The number of cluster heads and the selection of optimal cluster heads is determined by the YSGA algorithm, while sensor nodes are assigned to its nearest cluster head. The cluster structure of the network is reconfigured by YSGA to ensure an optimal distribution of cluster heads and reduce the transmission distance. Experiments show competitive results and demonstrate that the proposed routing protocol minimizes the energy consumption, improves the lifetime, and prolongs the stability period of the network in comparison with the stated of the art clustering routing protocols.


Author(s):  
Muhammad Inam ◽  
Zhou Li ◽  
Zulfiqar Ali Zardari ◽  
Fawaz Mahiuob Mohammed Mokbal

The sensor nodes have limited computation, sensing, communication capabilities and generally operated by batteries in a harsh atmosphere with non-replenish able power sources. These limitations force the sensor network subject to failure because most of the energy is spent on sensing, computing and data transmission. This paper introduces an Energy Efficient Clustering and Shortest-Path Routing Protocol (EECSRP) to assist Wireless Sensor Networks (WSNs) by (a) extending the lifespan of the network (b) effectively using the battery power (c) decreasing the network overhead and (d) ensuring a high packet transmission ratio with minimal delay. The delay time-based Cluster Head (CH) is elected based on the node degree, residual energy and Received Signal Strength (RSS) to accomplish the goal. Additionally, the RSS-based network partitioning is implemented to evaluate the gradient based on demand routing between source (sensing node) and destination (BS). Whenever the current CH residual energy goes under the threshold level, the proposed protocol performs the clustering process, reducing the exchange of control packets. However, the BS periodically gathers the data from every single CH which helps to reduce the collision and Medium Access Control (MAC) layer conflict. From the simulation results, it is the evident that the proposed protocol performance in terms of average end-to-end latency, packet delivery ratio, average energy consumption and control overhead is better than the well-known current protocols.


2019 ◽  
Vol 13 (10) ◽  
pp. 1449-1457 ◽  
Author(s):  
Olayinka O. Ogundile ◽  
Muyiwa B. Balogun ◽  
Owoicho E. Ijiga ◽  
Elijah O. Falayi

Sign in / Sign up

Export Citation Format

Share Document