scholarly journals A Robustness Measure of Transient Stability Under Operational Constraints in Power Systems

2018 ◽  
Vol 2 (4) ◽  
pp. 803-808 ◽  
Author(s):  
Liviu Aolaritei ◽  
Dongchan Lee ◽  
Thanh Long Vu ◽  
Konstantin Turitsyn
2021 ◽  
Vol 13 (12) ◽  
pp. 6953
Author(s):  
Yixing Du ◽  
Zhijian Hu

Data-driven methods using synchrophasor measurements have a broad application prospect in Transient Stability Assessment (TSA). Most previous studies only focused on predicting whether the power system is stable or not after disturbance, which lacked a quantitative analysis of the risk of transient stability. Therefore, this paper proposes a two-stage power system TSA method based on snapshot ensemble long short-term memory (LSTM) network. This method can efficiently build an ensemble model through a single training process, and employ the disturbed trajectory measurements as the inputs, which can realize rapid end-to-end TSA. In the first stage, dynamic hierarchical assessment is carried out through the classifier, so as to screen out credible samples step by step. In the second stage, the regressor is used to predict the transient stability margin of the credible stable samples and the undetermined samples, and combined with the built risk function to realize the risk quantification of transient angle stability. Furthermore, by modifying the loss function of the model, it effectively overcomes sample imbalance and overlapping. The simulation results show that the proposed method can not only accurately predict binary information representing transient stability status of samples, but also reasonably reflect the transient safety risk level of power systems, providing reliable reference for the subsequent control.


2001 ◽  
Vol 137 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Luonan Chen ◽  
Asako Ono ◽  
Yasuyuki Tada ◽  
Hiroshi Okamoto ◽  
Ryuya Tanabe

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2975 ◽  
Author(s):  
Zhenzhi Lin ◽  
Yuxuan Zhao ◽  
Shengyuan Liu ◽  
Fushuan Wen ◽  
Yi Ding ◽  
...  

Transient stability after islanding is of crucial importance because a controlled islanding strategy is not feasible if transient stability cannot be maintained in the islands created. A new indicator of transient stability for controlled islanding strategies, defined as the critical islanding time (CIT), is presented for slow coherency-based controlled islanding strategies to determine whether all the islands created are transiently stable. Then, the stable islanding interval (SII) is also defined to determine the appropriate time frame for stable islanding. Simulations were conducted on the New England test system–New York interconnected system to demonstrate the characteristics of the critical islanding time and stable islanding interval. Simulation results showed that the answer for when to island could be easily reflected by the proposed CIT and SII indicators. These two indicators are beneficial to power dispatchers to keep the power systems transiently stable and prevent widespread blackouts.


Sign in / Sign up

Export Citation Format

Share Document