Modeling and Force Fluctuation Analysis of Open Winding PMLSM Driven by Dual-terminal

Author(s):  
Chen Deng ◽  
Liang Zhou ◽  
Ming Yan ◽  
Jinyang Han ◽  
Ying Zhong ◽  
...  
1989 ◽  
Author(s):  
Vladimir Marecek ◽  
Miklos Gratzl ◽  
Angras Pungor ◽  
Jiri Janata

Fractals ◽  
2020 ◽  
Vol 28 (02) ◽  
pp. 2050050
Author(s):  
V. E. ARCE-GUEVARA ◽  
M. O. MENDEZ ◽  
J. S. MURGUÍA ◽  
A. ALBA ◽  
H. GONZÁLEZ-AGUILAR ◽  
...  

In this work, the scaling behavior of the sleep process is evaluated by using detrended fluctuation analysis based on wavelets. The analysis is carried out from arrivals of short and recurrent cortical events called A-phases, which in turn build up the Cyclic Alternating Pattern phenomenon, and are classified in three types: A1, A2 and A3. In this study, 61 sleep recordings corresponding to healthy, nocturnal frontal lobe epilepsy patients and sleep-state misperception subjects, were analyzed. From the A-phase annotations, the onsets were extracted and a binary sequence with one second resolution was generated. An item in the sequence has a value of one if an A-phase onset occurs in the corresponding window, and a value of zero otherwise. In addition, we consider other different temporal resolutions from 2[Formula: see text]s to 256[Formula: see text]s. Furthermore, the same analysis was carried out for sequences obtained from the different types of A-phases and their combinations. The results of the numerical analysis showed a relationship between the time resolutions and the scaling exponents; specifically, for higher time resolutions a white noise behavior is observed, whereas for lower time resolutions a behavior towards to [Formula: see text]-noise is exhibited. Statistical differences among groups were observed by applying various wavelet functions from the Daubechies family and choosing the appropriate sequence of A-phase onsets. This scaling analysis allows the characterization of the free-scale dynamic of the sleep process that is specific for each sleep condition. The scaling exponent could be useful as a diagnosis parameter in clinics when sleep macrostructure does not offer enough information.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ziyou Zhou ◽  
Can Wu ◽  
Zhen Hu ◽  
Yujuan Chai ◽  
Kai Chen ◽  
...  

AbstractIt has been known that short-time auditory stimulation can contribute to the improvement of the balancing ability of the human body. The present study aims to explore the effects of white Gaussian noise (WGN) of different intensities and frequencies on dynamic balance performance in healthy young adults. A total of 20 healthy young participants were asked to stand at a dynamic balance force platform, which swung along the x-axis with an amplitude of ± 4° and frequency of 1 Hz. Their center of pressure (COP) trajectories were recorded when they were stimulated by WGN of different intensities (block 1) and different frequencies (block 2). A traditional method and detrended fluctuation analysis (DFA) were used for data preprocessing. The authors found that only with 75–85 dB WGN, the COP parameters improved. WGN frequency did not affect the dynamic balance performance of all the participants. The DFA results indicated stimulation with 75 dB WGN enhanced the short-term index and reduced the crossover point. Stimulation with 500 Hz and 2500 Hz WGN significantly enhanced the short-term index. These results suggest that 75 dB WGN and 500 Hz and 2500 Hz WGN improved the participants’ dynamic balance performance. The results of this study indicate that a certain intensity of WGN is indispensable to achieve a remarkable improvement in dynamic balance. The DFA results suggest that WGN only affected the short-term persistence, indicating the potential of WGN being considered as an adjuvant therapy in low-speed rehabilitation training.


Author(s):  
Javier Gómez-Gómez ◽  
Rafael Carmona-Cabezas ◽  
Ana B. Ariza-Villaverde ◽  
Eduardo Gutiérrez de Ravé ◽  
Francisco José Jiménez-Hornero

2021 ◽  
pp. 107754632110260
Author(s):  
Zhaoxue Deng ◽  
Xu Li ◽  
Tianqin Liu ◽  
Shuen Zhao

Considering the negative vertical dynamics effect of switched reluctance motor on an in-wheel motor driving system, this article presents a modeling and suppression method for unbalanced radial force of the in-wheel motor driving system. To tease out the coupling relationship within the in-wheel motor driving system, this investigation, respectively, explores the principle of unbalanced radial force and the coupling relationship between rotor eccentricity and road excitation based on the suspension response model with unbalanced radial force under road excitation. The switched reluctance motor nonlinear analytical model was fitted by the Fourier series, and its radial electromagnetic force was modeled and analyzed by the Maxwell stress tensor method. To mitigate the influence of radial electromagnetic force fluctuation and unbalanced radial force amplitude value under eccentricity condition on the in-wheel motor driving system, the elitist non-dominated sorting genetic algorithm was adopted to improve radial electromagnetic force fluctuation and unbalanced radial force amplitude value of the switched reluctance motor. The simulation results show that the proposed optimization method can suppress the radial electromagnetic force fluctuation and unbalanced radial force amplitude value, and the negative effect of vertical dynamics of the in-wheel motor driving system is conspicuously mitigated.


Sign in / Sign up

Export Citation Format

Share Document