16 channel, 10 Gb/s DWDM transmission of directly modulated lasers with 100 GHz channel spacing over 100 km of negative dispersion fiber

Author(s):  
A. Filios ◽  
B. Hallock ◽  
T. Kennedy ◽  
I. Tomkos ◽  
M. Vodhanel ◽  
...  
2007 ◽  
Vol 15 (2) ◽  
Author(s):  
P. Krehlik

AbstractIn the paper the impact of frequency chirp of directly modulated lasers is considered in context of high-speed data transmission over negative dispersion fiber. Chirp/dispersion induced signal distortions are described, and detailed investigations of their influence on 10 Gb/s transmission system performance are presented. The desired laser chirp characteristics and optimal driving conditions are determined. It is also demonstrated that directly modulated laser with low chirp offers similar or even better dispersion tolerance than unchirped (externally modulated) source. Experimental verification of described investigations is presented at the end.


2002 ◽  
Vol 14 (3) ◽  
pp. 408-410 ◽  
Author(s):  
I. Tomkos ◽  
R. Hesse ◽  
R. Vodhanel ◽  
A. Boskovic

Optik ◽  
2020 ◽  
Vol 218 ◽  
pp. 164997 ◽  
Author(s):  
Anurag Upadhyay ◽  
Shivam Singh ◽  
Y.K. Prajapati ◽  
Rajeev Tripathi

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Anurupa Lubana ◽  
Sanmukh Kaur ◽  
Yugnanda Malhotra

AbstractIn this work, we study and analyze the performance of Raman + Erbium-Ytterbium codoped fiber hybrid optical amplifier (HOA) for an ultradense wavelength division multiplexing (UD-WDM) system having 100 channels. The system has been investigated considering initial values of channel spacing and data rate of 0.1 nm (12.5 GHz) and 100 GB/s, respectively. Initially, the two important WDM system parameters—wavelength and channel spacing—have been selected and then optimization of the proposed HOA has been performed in terms of EYDFA length, pump power and Er+ concentration to achieve higher values of average gain, Q-factor and lower gain variation ratio. The optimized configuration of the HOA results in the achievement of higher value of average gain, Q-factor and gain variation ratio of 47 dB, 14 and 0.14, respectively, which confirms its viability for UD-WDM system applications.


Author(s):  
Borui Xu ◽  
Jiazheng Sun ◽  
Shijun Xia ◽  
Sha Zhu ◽  
Yu Liu ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Md. Ibadul Islam ◽  
Md Saiful Islam

AbstractIn this work, a dispersion compensating photonic crystal fiber (DC-PCF) is proposed in which dispersion, dispersion slope, second order dispersion, third order dispersion, nonlinearity, effective mode area, V parameter are investigated. The suggested structure is very effective for compensating of chromatic dispersion about −951 to −3075.10 ps/(nm.km) over 1340–1640 nm wavelength bandwidth. With perfectly matched layer boundary condition, guiding properties are inspected applying finite element method (FEM). The investigated results conform the opportunity of large negative dispersion and high group velocity dispersion (GVD) of −2367.10 ps/(nm.km) and 3018.55 ps2/km respectively, at 1550 nm operating wavelength. The offered fiber also shows low third order dispersion about −637.88 ps3/km, high nonlinearity of 91.11 W−1 km−1. From overall simulation results, it can be expected that the suggested PCF will be an effective candidate in high bit rate long haul optical communication system as well as sensing applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hongqiang Li ◽  
Yaoting Bai ◽  
Xiaye Dong ◽  
Enbang Li ◽  
Yang Li ◽  
...  

Four methods based on a multimode interference (MMI) structure are optimally designed to flatten the spectral response of silicon-on-insulator- (SOI-) based arrayed-waveguide grating (AWG) applied in a demodulation integration microsystem. In the design for each method, SOI is selected as the material, the beam propagation method is used, and the performances (including the 3 dB passband width, the crosstalk, and the insertion loss) of the flat-top AWG are studied. Moreover, the output spectrum responses of AWGs with or without a flattened structure are compared. The results show that low insertion loss, crosstalk, and a flat and efficient spectral response are simultaneously achieved for each kind of structure. By comparing the four designs, the design that combines a tapered MMI with tapered input/output waveguides, which has not been previously reported, was shown to yield better results than others. The optimized design reduced crosstalk to approximately −21.9 dB and had an insertion loss of −4.36 dB and a 3 dB passband width, that is, approximately 65% of the channel spacing.


Sign in / Sign up

Export Citation Format

Share Document