cloud tops
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 54)

H-INDEX

33
(FIVE YEARS 4)

MAUSAM ◽  
2022 ◽  
Vol 52 (3) ◽  
pp. 463-468
Author(s):  
A. J. MATHEW ◽  
S. U. KAIMAL

Radar echoes of 0900 and 1100 UTC over Kochi and 200 km around were studied from 1996 to 1999 along with SST of southeast Arabian Sea and Kochi. The following results are obtained : Monsoon convective cloud tops were lower than Pre-monsoon and Post-monsoon convective cloud tops. (ii) In the mean, monsoon cloud tops gradually increased from 1996 to 1998 and then decreased. (iii) Very large convective activity existed during August 1997 to June 1998 compared to other periods of this study. Seasonally the higher the SST, the higher is convective cloud top. (v) Interannually, large positive SST anomaly coincided with high convective activity and this may be related to then prevailing El Nino.


2021 ◽  
Author(s):  
Harshvardhan Harshvardhan ◽  
Richard Ferrare ◽  
Sharon Burton ◽  
Johnathan Hair ◽  
Chris Hostetler ◽  
...  

Abstract. Biomass burning in southwestern Africa produces smoke plumes that are transported over the Atlantic Ocean and overlie vast regions of stratocumulus clouds. This aerosol layer contributes to direct and indirect radiative forcing of the atmosphere in this region, particularly during the months of August, September and October. There was a multi-year international campaign to study this aerosol and its interactions with clouds. Here we report on the evolution of aerosol distributions and properties as measured by the airborne high spectral resolution lidar (HSRL) during the ORACLES (Observations of Aerosols above Clouds and their intEractionS) campaign in September 2016. The NASA Langley HSRL-2 instrument was flown on the NASA ER-2 aircraft for several days in September 2016. Data were aggregated at two pairs of 2° × 2° grid boxes to examine the evolution of the vertical profile of aerosol properties during transport over the ocean. Results showed that the structure of the profile of aerosol extinction and microphysical properties is maintained over a one to two-day time scale. The fraction of aerosol in the fine mode between 50 and 500 nm remained above 0.95 and the effective radius of this fine mode was 0.16 μm from 3 to 5 km in altitude. This indicates that there is essentially no scavenging or dry deposition at these altitudes. Moreover, there is very little day to day variation in these properties, such that time sampling as happens in such campaigns, may be representative of longer periods such as monthly means. Below 3 km there is considerable mixing with larger aerosol, most likely continental source near land. Furthermore, these measurements indicated that there was a distinct gap between the bottom of the aerosol layer and cloud tops at the selected locations as evidenced by a layer of several hundred meters that contained relatively low aerosol extinction values above the clouds.


2021 ◽  
Author(s):  
Heinz Jürgen Punge ◽  
Kristopher M. Bedka ◽  
Michael Kunz ◽  
Sarah D. Bang ◽  
Kyle F. Itterly

Abstract. Accurate estimates of hail risk to fixed and mobile assets such as crops, infrastructure and vehicles are required for both insurance pricing and preventive measures. Here we present an event catalog to describe hail hazard in South Africa guided by 14 years of geostationary satellite observations of convective storms. Overshooting cloud tops have been detected, grouped and tracked to describe the spatio-temporal extent of potential hail events. It is found that hail events concentrate mainly in the southeast of the country, along the Highveld and the eastern slopes. Events are most frequent from mid-November through February and peak in the afternoon, between 13 and 17 UTC. Multivariate stochastic modeling of event properties yields an event catalog spanning 25 000 years, aiming to estimate, in combination with vulnerability and exposure data, hail damage for return periods of 200 years.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Feifan Liu ◽  
Gaopeng Lu ◽  
Torsten Neubert ◽  
Jiuhou Lei ◽  
Oliver Chanrion ◽  
...  

AbstractNarrow bipolar events (NBEs) are signatures in radio signals from thunderstorms observed by ground-based receivers. NBEs may occur at the onset of lightning, but the discharge process is not well understood. Here, we present spectral measurements by the Atmosphere‐Space Interactions Monitor (ASIM) on the International Space Station that are associated with nine negative and three positive NBEs observed by a ground‐based array of receivers. We found that both polarities NBEs are associated with emissions at 337 nm with weak or no detectable emissions at 777.4 nm, suggesting that NBEs are associated with streamer breakdown. The rise times of the emissions for negative NBEs are about 10 μs, consistent with source locations at cloud tops where photons undergo little scattering by cloud particles, and for positive NBEs are ~1 ms, consistent with locations deeper in the clouds. For negative NBEs, the emission strength is almost linearly correlated with the peak current of the associated NBEs. Our findings suggest that ground-based observations of radio signals provide a new means to measure the occurrences and strength of cloud-top discharges near the tropopause.


Author(s):  
Jason E. Nachamkin ◽  
Adam Bienkowski ◽  
Rich Bankert ◽  
Krishna Pattipati ◽  
David Sidoti ◽  
...  

AbstractA physics-based cloud identification scheme, originally developed for a machine learning forecast system, was applied to verify cloud location and coverage bias errors from two years of 6-hour forecasts. The routine identifies stable and unstable environments based on the potential for buoyant versus stable cloud formation. The efficacy of the scheme is documented by investigating its ability to identify cloud patterns and systematic forecast errors. Results showed stable cloud forecasts contained widespread, persistent negative cloud cover biases most likely associated with turbulent, radiative and microphysical feedback processes. In contrast, unstable clouds were better predicted despite being poorly resolved. This suggests that scale aliasing, while energetically problematic, results in less severe short-term cloud cover errors.This study also evaluated Geostationary Operational Environmental Satellite (GOES) cloud base retrievals for their effectiveness at identifying regions of lower tropospheric cloud cover. Retrieved cloud base heights were sometimes too high with respect to their actual values in regions of deep-layered clouds, resulting in underestimates of the extent of low cloud cover in these areas. Sensitivity experiments indicate the most accurate cloud base estimates existed in regions with cloud tops at or below 8 km.


2021 ◽  
Vol 21 (18) ◽  
pp. 14079-14088
Author(s):  
Ramon Campos Braga ◽  
Daniel Rosenfeld ◽  
Ovid O. Krüger ◽  
Barbara Ervens ◽  
Bruna A. Holanda ◽  
...  

Abstract. Quantifying the precipitation within clouds is a crucial challenge to improve our current understanding of the Earth's hydrological cycle. We have investigated the relationship between the effective radius of droplets and ice particles (re) and precipitation water content (PWC) measured by cloud probes near the top of growing convective cumuli. The data for this study were collected during the ACRIDICON–CHUVA campaign on the HALO research aircraft in clean and polluted conditions over the Amazon Basin and over the western tropical Atlantic in September 2014. Our results indicate a threshold of re∼13 µm for warm rain initiation in convective clouds, which is in agreement with previous studies. In clouds over the Atlantic Ocean, warm rain starts at smaller re, likely linked to the enhancement of coalescence of drops formed on giant cloud condensation nuclei. In cloud passes where precipitation starts as ice hydrometeors, the threshold of re is also shifted to values smaller than 13 µm when coalescence processes are suppressed and precipitating particles are formed by accretion. We found a statistically significant linear relationship between PWC and re for measurements at cloud tops, with a correlation coefficient of ∼0.94. The tight relationship between re and PWC was established only when particles with sizes large enough to precipitate (drizzle and raindrops) are included in calculating re. Our results emphasize for the first time that re is a key parameter to determine both initiation and amount of precipitation at the top of convective clouds.


Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Morgan Rehnberg

Magnetic reconnection events less than 2 Jovian radii above the planet’s cloud tops could explain why Juno has yet to observe a source for Jupiter’s polar aurore.


2021 ◽  
Author(s):  
Siddhant Gupta ◽  
Greg M. McFarquhar ◽  
Joseph R. O'Brien ◽  
Michael R. Poellot ◽  
David J. Delene ◽  
...  

Abstract. Aerosol-cloud-precipitation interactions (ACIs) provide the greatest source of uncertainties in predicting changes in Earth’s energy budget due to poor representation of marine stratocumulus and the associated ACIs in climate models. Using in situ data from 329 cloud profiles across 24 research flights from the NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) field campaign in September 2016, August 2017, and October 2018, it is shown that contact between above-cloud biomass-burning aerosols and marine stratocumulus over the southeast Atlantic Ocean was associated with precipitation suppression and a decrease in the precipitation susceptibility (So) to aerosols. The 173 “contact” profiles with aerosol concentration (Na) greater than 500 cm−3 within 100 m above cloud tops had 50 % lower precipitation rate (Rp) and 20 % lower So, on average, compared to 156 “separated” profiles with Na less than 500 cm−3 up to at least 100 m above cloud tops. Contact and separated profiles had statistically significant differences in droplet concentration (Nc) and effective radius (Re) (95 % confidence intervals from a two-sample t-test are reported). Contact profiles had 84 to 90 cm−3 higher Nc and 1.4 to 1.6 μm lower Re compared to separated profiles. In clean boundary layers (below-cloud Na less than 350 cm−3), contact profiles had 25 to 31 cm−3 higher Nc and 0.2 to 0.5 μm lower Re. In polluted boundary layers (below-cloud Na exceeding 350 cm−3), contact profiles had 98 to 108 cm−3 higher Nc and 1.6 to 1.8 μm lower Re. On the other hand, contact and separated profiles had statistically insignificant differences between the average liquid water path, cloud thickness, and meteorological parameters like surface temperature, lower tropospheric stability, and estimated inversion strength. These results suggest the changes in cloud properties were driven by ACIs rather than meteorological effects, and the existing relationships between Rp and Nc must be adjusted to account for the role of ACIs.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Salter SH ◽  

Elevated sea-surface temperatures are a necessary but not sufficient requirement for the formation of hurricanes and typhoons. This paper suggests a way to exploit this. Twomey [1] showed that cloud reflectivity depends on the size-distribution of cloud drops, with a large number of small drops reflecting more than a smaller number of larger ones. Mid-ocean air is cleaner than over land. Latham [2-4] suggested that reflectivity of marine stratocumulus clouds could be increased by releasing a submicron spray of filtered sea water into the bottom of the marine boundary layer. The salt residues left after evaporation would be mixed by turbulence through the full depth of the marine boundary layer and would be ideal cloud condensation nuclei. Those that reached a height where the air had a super-saturation above 100% by enough to get over the peak of the Köhler curve would produce an increased number of cloud drops and so trigger the Twomey effect. The increase in reflection from cloud tops back out to space would cool sea-surface water. We are not trying to increase cloud cover; we just want to make existing cloud tops whiter. The spray could be produced by wind-driven vessels cruising chosen ocean regions. The engineering design of sea-going hardware is well advanced. This paper suggests a way to calculate spray quantities and the number and cost of spray vessels to achieve a hurricane reduction to a more acceptable intensity. It is intended to show the shape of a possible calculation with credible if not exact assumptions. Anyone with better assumptions should be able to follow the process.


2021 ◽  
Author(s):  
Henrik Melin ◽  
Leigh Fletcher ◽  
Patrick Irwin ◽  
Davide Grassi

<p>The polar orbit of the Juno spacecraft provides an unprecedented view of Jupiter's atmosphere as it passes above the cloud tops every 53 days. The spectrum in the near infrared is dominated by reflected sunlight from aerosols (both condensate clouds and hazes) in the troposphere, as well as absorptions by the molecular species present. In addition, thermal emission longward of 4.5 µm provides access to the gaseous composition and aerosols below the top-most clouds.  Of particular importance in shaping the spectra are ammonia, phosphine and water, in addition to minor contributions from species such as arsine, germane and carbon monoxide. These regions also include emissions by ionospheric H<sub>3</sub><sup>+</sup>. Here, we produce meridionally averaged zonal profiles from the Juno-JIRAM observations obtained during PJ3, which provide almost complete latitude coverage. To analyse the observations, we use the radiative transfer and retrieval code NEMESIS (Irwin et al., 2008), which has been updated to cover this wavelength with the latest line-data from HITRAN. Our aim is to analyse both the reflected-sunlight region (2-4 µm) and the thermal emission region (4-5 µm) simultaneously for the first time, building on the work of Grassi et al. (2019) and Grassi et al. (2020).  We investigate the appropriate set of aerosol and haze layers, starting with NH4SH at 1.3 bars, NH3 and 0.7 bars and two grey hazes: one in the troposphere and one in the stratosphere.  The optical properties of these aerosols are tested to find the optimal cloud structure to reproduce the full JIRAM spectrum. From the retrievals of the zonally-averaged spectra we investigate whether spatial variations of tropospheric composition are truly required to fit the data, comparing gaseous contrasts to the expected circulation patterns associated with Jupiter’s belts and zones.</p>


Sign in / Sign up

Export Citation Format

Share Document