cloud height
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 20)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Heba S. Marey ◽  
James R. Drummond ◽  
Dylan B. A. Jones ◽  
Helen Worden ◽  
Merritt N. Deeter ◽  
...  

Abstract. The Measurements of Pollution in the Troposphere (MOPITT) satellite instrument has been measuring global tropospheric carbon monoxide (CO) since March 2000, providing the longest nearly continuous record of CO from space. During its long mission the data processing algorithms have been updated to improve the quality of CO retrievals and the sensitivity to the lower troposphere. Currently, MOPITT retrievals are only performed for clear-sky observations or over low clouds for ocean scenes. Compared to all observed radiances, successful retrieval rates are about 30 % and 40 % between 90° S–90° N and 60° S–60° N, respectively. Spatial seasonal variations show that while MOPITT data coverage in some places reaches 30 % in summer, this number can drop to less than 10 % in winter due to significantly increased cloud cover. Therefore, we investigate the current MOPITT cloud detection algorithm and consider approaches to increase the data coverage. The MOPITT CO total column (TC) data were modified by turning off the cloud detection scheme to allow a CO retrieval result regardless of their cloud status. Analyses of the standard CO TC product (cloud filtered) and non-standard product (non-cloud masked) were conducted for selected days. Results showed some coherent structures that were observed frequently in the non-masked CO product that were not present in the standard product and could potentially be actual CO features. A corresponding analysis of Moderate Resolution Imaging Spectroradiometer(MODIS) cloud height and cloud mask products along with MOPITT cloud flag descriptors was conducted in order to understand the cloud conditions present for these apparently physical CO features. Results show that a significant number of low cloud CO retrievals were rejected in the standard product. Those missing areas match the coherent patterns that were detected in the non-masked CO product. Many times, these structures were also seen in the Infrared Atmospheric Sounding Interferometer (IASI) CO TC product indicating actual CO plumes. Multi-angle Imaging SpectroRadiometer (MISR) data on the Terra satellite were also employed for cloud height comparison with MODIS. Comparisons of MODIS and MISR cloud height data indicate remarkable agreement which is encouraging for the possibility of incorporating MODIS cloud height in the MOPITT cloud detection scheme. Statistics of the global assessment of the potential use of MODIS cloud height shows that MOPITT data increases significantly when cloud heights less than 2 km in height are incorporated in the retrievals. However quality indices should be defined and produced to ensure sufficient retrieval quality.


2021 ◽  
Vol 14 (3) ◽  
pp. 2451-2476
Author(s):  
Steven Compernolle ◽  
Athina Argyrouli ◽  
Ronny Lutz ◽  
Maarten Sneep ◽  
Jean-Christopher Lambert ◽  
...  

Abstract. Accurate knowledge of cloud properties is essential to the measurement of atmospheric composition from space. In this work we assess the quality of the cloud data from three Copernicus Sentinel-5 Precursor (S5P) TROPOMI cloud products: (i) S5P OCRA/ROCINN_CAL (Optical Cloud Recognition Algorithm/Retrieval of Cloud Information using Neural Networks;Clouds-As-Layers), (ii) S5P OCRA/ROCINN_CRB (Clouds-as-Reflecting Boundaries), and (iii) S5P FRESCO-S (Fast Retrieval Scheme for Clouds from Oxygen absorption bands – Sentinel). Target properties of this work are cloud-top height and cloud optical thickness (OCRA/ROCINN_CAL), cloud height (OCRA/ROCINN_CRB and FRESCO-S), and radiometric cloud fraction (all three algorithms). The analysis combines (i) the examination of cloud maps for artificial geographical patterns, (ii) the comparison to other satellite cloud data (MODIS, NPP-VIIRS, and OMI O2–O2), and (iii) ground-based validation with respect to correlative observations (30 April 2018 to 27 February 2020) from the Cloudnet network of ceilometers, lidars, and radars. Zonal mean latitudinal variation of S5P cloud properties is similar to that of other satellite data. S5P OCRA/ROCINN_CAL agrees well with NPP VIIRS cloud-top height and cloud optical thickness and with Cloudnet cloud-top height, especially for the low (mostly liquid) clouds. For the high clouds, S5P OCRA/ROCINN_CAL cloud-top height is below the cloud-top height of VIIRS and of Cloudnet, while its cloud optical thickness is higher than that of VIIRS. S5P OCRA/ROCINN_CRB and S5P FRESCO cloud height are well below the Cloudnet cloud mean height for the low clouds but match on average better with the Cloudnet cloud mean height for the higher clouds. As opposed to S5P OCRA/ROCINN_CRB and S5P FRESCO, S5P OCRA/ROCINN_CAL is well able to match the lowest CTH mode of the Cloudnet observations. Peculiar geographical patterns are identified in the cloud products and will be mitigated in future releases of the cloud data products.


2021 ◽  
Author(s):  
Steven Compernolle ◽  
Athina Argyrouli ◽  
Ronny Lutz ◽  
Maarten Sneep ◽  
Jean-Christopher Lambert ◽  
...  

<p>Space-born atmospheric composition measurements, like those from Sentinel-5p TROPOMI, are strongly affected by the presence of clouds. Dedicated cloud data products, typically retrieved with the same sensor, are therefore an important tool for the provider of atmospheric trace gas retrievals. Cloud products are used for filtering and modification of the modelled radiative transfer.</p><p>In this work, we assess the quality of the cloud data derived from Copernicus Sentinel-5 Precursor TROPOMI radiance measurements. Three cloud products are considered: (i) L2_CLOUD OCRA/ROCINN CAL (Optical Cloud Recognition Algorithm/Retrieval of Cloud Information using Neural Networks; Clouds-As-Layers), (ii) L2_CLOUD OCRA/ROCINN CRB (same; Clouds-as Reflecting Boundaries), and (iii) the S5p support product FRESCO-S (Fast Retrieval Scheme for Clouds from Oxygen absorption bands for Sentinel). These cloud products are used in the retrieval of several S5p trace gas products (e.g., ozone columns and profile, total and tropospheric nitrogen dioxide, sulfur dioxide, formaldehyde). The quality assessment of these cloud products is carried out within the framework of ESA’s Sentinel-5p Mission Performance Centre (MPC) with support from AO validation projects focusing on the respective atmospheric gases.</p><p>Cloud height data from the three S5p cloud products is compared to radar/lidar based cloud profile information from the ground-based networks CLOUDNET and ARM. The cloud height from S5p CLOUD CRB and S5p FRESCO are on average 0.6 km below the cloud mid-height of CLOUDNET measurements, and the cloud top height from S5p CLOUD CAL is on average 1 km below CLOUDNET’s cloud top height. However, the comparison is different for low and high clouds, with S5p CLOUD CAL cloud top height being only 0.3 km below CLOUDNET’s for low clouds.  The radiometric cloud fraction and cloud (top) height are compared to those of other satellite cloud products like Aura OMI O<sub>2</sub>-O<sub>2</sub>. While the latitudinal variation is often similar, offsets are encountered.</p><p>Recently, major S5p cloud product upgrades were released for S5p OCRA/ROCINN (July 2020) and for S5p FRESCO (December 2020), leading to a decrease of the ROCINN CRB cloud height and an increase of the FRESCO cloud height on average. Moreover, a major change in the ROCINN surface albedo treatment leads to a clear improvement of the comparison with CLOUDNET at the complicated sea/land/ice/snow site Ny-Alesund.</p><div></div>


2021 ◽  
Author(s):  
Jos van Geffen ◽  
Henk Eskes ◽  
Maarten Sneep ◽  
Gaia Pinardi ◽  
Tijl Verhoelst ◽  
...  

<p>The Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor (S5P) satellite is a unique instrument, combining daily global coverage, very high signal-to-noise, a broad spectral range and very small pixels up to 3.5 x 5.5 km<sup>2</sup>. Retrievals are available for a large number of species, including NO<sub>2</sub>. Due to the very small pixels and daily revisit, TROPOMI provides detailed information on individual sources and source sectors like individual power plants, industrial complexes, cities and suburbs, highways, and even individual ships. The TROPOMI Level-2 NO<sub>2</sub> product is available from 30 April 2018 onwards.</p><p>Validation exercises of TROPOMI v1.2 & v1.3 data (2018-2020) with OMI and ground-based remote sensing observations have shown that TROPOMI's tropospheric NO<sub>2</sub> column are low by up to 50% over highly polluted areas compared to independent data. In contrast, the underlying slant columns of TROPOMI agree well with OMI and independent SAOZ observations. Differences between OMI and TROPOMI have been mainly attributed to the different cloud height retrieval, using the O<sub>2</sub>-O<sub>2</sub> versus O<sub>2</sub>-A bands respectively.</p><p>In our presentation we discuss recent improvements in the TROPOMI NO<sub>2</sub> retrieval and the impact these have on the tropospheric columns and on the comparisons with OMI and ground-based remote-sensing data.</p><p>Version v1.4, which became operational on 2 December 2020, entails a major improvement in the cloud height retrieval, based on a modification of the FRESCO-S cloud retrieval using the O<sub>2</sub>-A band observations. In particular the cloud height over scenes with a small cloud coverage have increased, resulting in larger tropospheric columns in the retrievals over polluted areas.</p><p>Version v2.2, to become operational in April/May 2021, includes similar cloud retrieval modifications. Furthermore, it provides a better treatment of saturation issues and transients, is using improved (ir)radiance measurements (level-1b v2 spectra) including degradation corrections, and includes a new albedo treatment.</p><p>The TROPOMI NO<sub>2</sub> retrievals are compared with OMI retrievals (from the QA4ECV product) and to ground-based observations with MAXDOAS and PANDORA instruments.</p>


2021 ◽  
Vol 42 (3) ◽  
pp. 522-526
Author(s):  
ZHANG Youjun ◽  
◽  
◽  
ZHANG Chijian ◽  
XIE Wanyi ◽  
...  
Keyword(s):  

2020 ◽  
Vol 12 (23) ◽  
pp. 3951
Author(s):  
Sophie Pailot-Bonnétat ◽  
Andrew J. L. Harris ◽  
Sonia Calvari ◽  
Marcello De Michele ◽  
Lucia Gurioli

Volcanic plume height is a key parameter in retrieving plume ascent and dispersal dynamics, as well as eruption intensity; all of which are crucial for assessing hazards to aircraft operations. One way to retrieve cloud height is the shadow technique. This uses shadows cast on the ground and the sun geometry to calculate cloud height. This technique has, however, not been frequently used, especially not with high-spatial resolution (30 m pixel) satellite data. On 26 October 2013, Mt Etna (Sicily, Italy) produced a lava fountain feeding an ash plume that drifted SW and through the approach routes to Catania international airport. We compared the proximal plume height time-series obtained from fixed monitoring cameras with data retrieved from a Landsat-8 Operational Land Imager image, with results being in good agreement. The application of the shadow technique to a single high-spatial resolution image allowed us to fully document the ascent and dispersion history of the plume–cloud system. We managed to do this over a distance of 60 km and a time period of 50 min, with a precision of a few seconds and vertical error on plume altitude of ±200 m. We converted height with distance to height with time using the plume dispersion velocity, defining a bent-over plume that settled to a neutral buoyancy level with distance. Potentially, the shadow technique defined here allows downwind plume height profiles and mass discharge rate time series to be built over distances of up to 260 km and periods of 24 h, depending on vent location in the image, wind speed, and direction.


2020 ◽  
Vol 10 (18) ◽  
pp. 6452 ◽  
Author(s):  
Yong-Hyuk Kim ◽  
Seung-Hyun Moon ◽  
Yourim Yoon

The lidar ceilometer estimates cloud height by analyzing backscatter data. This study examines weather detectability using a lidar ceilometer by making an unprecedented attempt at detecting weather phenomena through the application of machine learning techniques to the backscatter data obtained from a lidar ceilometer. This study investigates the weather phenomena of precipitation and fog, which are expected to greatly affect backscatter data. In this experiment, the backscatter data obtained from the lidar ceilometer, CL51, installed in Boseong, South Korea, were used. For validation, the data from the automatic weather station for precipitation and visibility sensor PWD20 for fog, installed at the same location, were used. The experimental results showed potential for precipitation detection, which yielded an F1 score of 0.34. However, fog detection was found to be very difficult and yielded an F1 score of 0.10.


2020 ◽  
Vol 20 (13) ◽  
pp. 7645-7665 ◽  
Author(s):  
Alexander B. MacDonald ◽  
Ali Hossein Mardi ◽  
Hossein Dadashazar ◽  
Mojtaba Azadi Aghdam ◽  
Ewan Crosbie ◽  
...  

Abstract. Aerosol–cloud interactions are the largest source of uncertainty in quantifying anthropogenic radiative forcing. The large uncertainty is, in part, due to the difficulty of predicting cloud microphysical parameters, such as the cloud droplet number concentration (Nd). Even though rigorous first-principle approaches exist to calculate Nd, the cloud and aerosol research community also relies on empirical approaches such as relating Nd to aerosol mass concentration. Here we analyze relationships between Nd and cloud water chemical composition, in addition to the effect of environmental factors on the degree of the relationships. Warm, marine, stratocumulus clouds off the California coast were sampled throughout four summer campaigns between 2011 and 2016. A total of 385 cloud water samples were collected and analyzed for 80 chemical species. Single- and multispecies log–log linear regressions were performed to predict Nd using chemical composition. Single-species regressions reveal that the species that best predicts Nd is total sulfate (Radj2=0.40). Multispecies regressions reveal that adding more species does not necessarily produce a better model, as six or more species yield regressions that are statistically insignificant. A commonality among the multispecies regressions that produce the highest correlation with Nd was that most included sulfate (either total or non-sea-salt), an ocean emissions tracer (such as sodium), and an organic tracer (such as oxalate). Binning the data according to turbulence, smoke influence, and in-cloud height allowed for examination of the effect of these environmental factors on the composition–Nd correlation. Accounting for turbulence, quantified as the standard deviation of vertical wind speed, showed that the correlation between Nd with both total sulfate and sodium increased at higher turbulence conditions, consistent with turbulence promoting the mixing between ocean surface and cloud base. Considering the influence of smoke significantly improved the correlation with Nd for two biomass burning tracer species in the study region, specifically oxalate and iron. When binning by in-cloud height, non-sea-salt sulfate and sodium correlated best with Nd at cloud top, whereas iron and oxalate correlated best with Nd at cloud base.


Sign in / Sign up

Export Citation Format

Share Document