Thermal Design Based on Surface Temperature Mapping

2005 ◽  
Vol 3 (4) ◽  
pp. 125-129 ◽  
Author(s):  
E.C.W. de Jong ◽  
J.A. Ferreira ◽  
P. Bauer
2017 ◽  
Vol 27 (6) ◽  
pp. 1304-1310 ◽  
Author(s):  
Abderrahmane Baïri ◽  
Clara Ortega Hermoso ◽  
David San Martén Ortega ◽  
Iken Baïri ◽  
Zsolt Peter

Purpose This work deals with the case of the quad flat non-lead 64 (QFN64) electronic package generating a low power range ranging from 0.01 to 0.1W. It is installed on one side of a printed circuit board (PCB) that can be inclined relative to the horizontal plane with an angle varying between 0° and 90° (horizontal and vertical positions, respectively). The surface temperature of the electronic assembly is subjected to air natural convection. Design/methodology/approach Calculations are done by means of the finite volume method for many configurations obtained by varying the generated power and the inclination angle. Findings The distribution of the surface temperature is determined on all the assembly areas (QFN and PCB). The study shows that the thermal behaviour of the electronic device is influenced by the generated power and the inclination angle. The 3D numerical survey leads to correlations allowing calculation of the average surface temperature in any part of the assembly, according to the power generated by the QFN64 and the inclination angle. Originality/value The proposed accurate correlations are original and unpublished. They optimize the thermal design of the electronic QFN64 package, which is increasingly used in many engineering fields.


Author(s):  
Wesley C. Patterson ◽  
Yusaku Nishio ◽  
Joseph Gonzales ◽  
Adam Mallette ◽  
Yuichi Hirai ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Karl Ridier ◽  
Alin-Ciprian Bas ◽  
Yuteng Zhang ◽  
Lucie Routaboul ◽  
Lionel Salmon ◽  
...  

Author(s):  
Jafar Madadnia

In the absence of a simple technique to predict convection heat transfer on building integrated photovoltaic (BIPV) surfaces, a mobile probe with two thermocouples was designed. Thermal boundary layers on vertical flat surfaces of a photovoltaic (PV) and a metallic plate were traversed. The plate consisted of twelve heaters where heat flux and surface temperature were controlled and measured. Uniform heat flux condition was developed on the heaters to closely simulate non-uniform temperature distribution on vertical PV modules. The two thermocouples on the probe measured local air temperature and contact temperature with the wall surface. Experimental results were presented in the forms of local Nusselt numbers versus Rayleigh numbers “Nu=a * (Ra)b”, and surface temperature versus dimensionless height [Ts -T∞= c*(z/h)d]. The constant values for “a”, “b”, “c” and “d” were determined from the best curve-fitting to the power-law relation. The convection heat transfer predictions from the empirical correlations were found to be in consistent with those predictions made by a number of correlations published in the open literature. A simple technique is then proposed to employ two experimental data from the probe to refine empirical correlations as the operational conditions change. A flexible technique to update correlations is of prime significance requirement in thermal design and operation of BIPV modules. The work is in progress to further extend the correlation to predict the combined radiation and convection on inclined PVs and channels.


Sign in / Sign up

Export Citation Format

Share Document