A Real-Time-Capable Closed-Form Multi-Objective Redundancy Resolution Scheme for Seven-DoF Serial Manipulators

2021 ◽  
Vol 6 (2) ◽  
pp. 431-438
Author(s):  
Wolfgang Wiedmeyer ◽  
Philipp Altoe ◽  
Jonathan Auberle ◽  
Christoph Ledermann ◽  
Torsten Kroger
1996 ◽  
Vol 118 (2) ◽  
pp. 214-219 ◽  
Author(s):  
Kilryong Han ◽  
Wankyun Chung ◽  
Y. Youm

This paper presents a new closed-form resolution scheme of the forward kinematics of parallel manipulators based on two concepts, local structurization and mechanism partition. This scheme is applied to 6-DOF Stewart platform manipulators and the effectiveness of this scheme is verified through numerical examples. It is shown that one extra sensor is sufficient for both 3-3 SPM and 6-3 SPM to exactly resolve the forward kinematic problem (FKP) in closed form and two sensors for 6-6 SPM. In previous research, at least three extra sensors were needed for closed-form resolution of the FKP for 6-6 SPM. Consequently, the new resolution scheme is efficient to implement and easy for real-time applications for the control of parallel manipulators.


Robotica ◽  
2013 ◽  
Vol 31 (8) ◽  
pp. 1299-1311 ◽  
Author(s):  
Paul Moubarak ◽  
Pinhas Ben-Tzvi

SUMMARYIn this paper the tip-over stability of mobile robots during manipulation with redundant arms is investigated in real-time. A new fast-converging algorithm, called the Circles Of INitialization (COIN), is proposed to calculate globally optimal postures of redundant serial manipulators. The algorithm is capable of trajectory following, redundancy resolution, and tip-over prevention for mobile robots during eccentric manipulation tasks. The proposed algorithm employs a priori training data generated from an exhaustive resolution of the arm's redundancy along a single direction in the manipulator's workspace. This data is shown to provide educated initial guess that enables COIN to swiftly converge to the global optimum for any other task in the workspace. Simulations demonstrate the capabilities of COIN, and further highlight its convergence speed relative to existing global search algorithms.


Author(s):  
Shreyanshu Parhi ◽  
S. C. Srivastava

Optimized and efficient decision-making systems is the burning topic of research in modern manufacturing industry. The aforesaid statement is validated by the fact that the limitations of traditional decision-making system compresses the length and breadth of multi-objective decision-system application in FMS.  The bright area of FMS with more complexity in control and reduced simpler configuration plays a vital role in decision-making domain. The decision-making process consists of various activities such as collection of data from shop floor; appealing the decision-making activity; evaluation of alternatives and finally execution of best decisions. While studying and identifying a suitable decision-making approach the key critical factors such as decision automation levels, routing flexibility levels and control strategies are also considered. This paper investigates the cordial relation between the system ideality and process response time with various prospective of decision-making approaches responsible for shop-floor control of FMS. These cases are implemented to a real-time FMS problem and it is solved using ARENA simulation tool. ARENA is a simulation software that is used to calculate the industrial problems by creating a virtual shop floor environment. This proposed topology is being validated in real time solution of FMS problems with and without implementation of decision system in ARENA simulation tool. The real-time FMS problem is considered under the case of full routing flexibility. Finally, the comparative analysis of the results is done graphically and conclusion is drawn.


2021 ◽  
Vol 292 ◽  
pp. 126066
Author(s):  
Ridoy Das ◽  
Yue Wang ◽  
Krishna Busawon ◽  
Ghanim Putrus ◽  
Myriam Neaimeh

Sign in / Sign up

Export Citation Format

Share Document