Operating systems programming: the SR programming language [Book Reviews]

Author(s):  
G. Lippman
2020 ◽  
Author(s):  
Cut Nabilah Damni

AbstrakSoftware komputer atau perangkat lunak komputer merupakan kumpulan instruksi (program atau prosedur) untuk dapat melaksanakan pekerjaan secara otomatis dengan cara mengolah atau memproses kumpulan intruksi (data) yang diberikan. (Yahfizham, 2019 : 19) Sebagian besar dari software komputer dibuat oleh (programmer) dengan menggunakan bahasa pemprograman. Orang yang membuat bahasa pemprograman menuliskan perintah dalam bahasa pemprograman seperti layaknya bahasa yang digunakan oleh orang pada umumnya dalam melakukan perbincangan. Perintah-perintah tersebut dinamakan (source code). Program komputer lainnya dinamakan (compiler) yang digunakan pada (source code) dan kemudian mengubah perintah tersebut kedalam bahasa yang dimengerti oleh komputer lalu hasilnya dinamakan program executable (EXE). Pada dasarnya, komputer selalu memiliki perangkat lunak komputer atau software yang terdiri dari sistem operasi, sistem aplikasi dan bahasa pemograman.AbstractComputer software or computer software is a collection of instructions (programs or procedures) to be able to carry out work automatically by processing or processing the collection of instructions (data) provided. (Yahfizham, 2019: 19) Most of the computer software is made by (programmers) using the programming language. People who make programming languages write commands in the programming language like the language used by people in general in conducting conversation. The commands are called (source code). Other computer programs called (compilers) are used in (source code) and then change the command into a language understood by the computer and the results are called executable programs (EXE). Basically, computers always have computer software or software consisting of operating systems, application systems and programming languages.


2020 ◽  
Vol 30 (3) ◽  
pp. 28-33 ◽  
Author(s):  
S. A. Pryadko ◽  
A. Yu. Troshin ◽  
V. D. Kozlov ◽  
A. E. Ivanov

The article describes various options for speeding up calculations on computer systems. These features are closely related to the architecture of these complexes. The objective of this paper is to provide necessary information when selecting the capability for the speeding process of solving the computation problem. The main features implemented using the following models are described: programming in systems with shared memory, programming in systems with distributed memory, and programming on graphics accelerators (video cards). The basic concept, principles, advantages, and disadvantages of each of the considered programming models are described. All standards for writing programs described in the article can be used both on Linux and Windows operating systems. The required libraries are available and compatible with the C/C++ programming language. The article concludes with recommendations on the use of a particular technology, depending on the type of task to be solved.


1975 ◽  
Vol 4 (45) ◽  
Author(s):  
Ole Sørensen

In the spring of 1973 it was decided to implement the language BCPL on the experimental microprogrammable computer RIKKE-1 being constructed in this department. The language was chosen to be the systems programming language for RlKKE-1, one argurment being the possibility of transferring the Oxford Operating system OS 8 to RIKKE-1. This paper describes the design process for an internal representation of OCODE, the resulting machine, the emulator, and the assembler, and finally there is a discussion of our experiences of running the OCODE machine during the past 8 months. Some future analysis and possible modifications are mentioned.


Author(s):  
Felix A. Wolf ◽  
Linard Arquint ◽  
Martin Clochard ◽  
Wytse Oortwijn ◽  
João C. Pereira ◽  
...  

AbstractGo is an increasingly-popular systems programming language targeting, especially, concurrent and distributed systems. Go differentiates itself from other imperative languages by offering structural subtyping and lightweight concurrency through goroutines with message-passing communication. This combination of features poses interesting challenges for static verification, most prominently the combination of a mutable heap and advanced concurrency primitives.We present Gobra, a modular, deductive program verifier for Go that proves memory safety, crash safety, data-race freedom, and user-provided specifications. Gobra is based on separation logic and supports a large subset of Go. Its implementation translates an annotated Go program into the Viper intermediate verification language and uses an existing SMT-based verification backend to compute and discharge proof obligations.


Sign in / Sign up

Export Citation Format

Share Document