Data-Driven Approach to Synthesizing Facial Animation Using Motion Capture

2017 ◽  
Vol 37 (4) ◽  
pp. 30-41 ◽  
Author(s):  
Kerstin Ruhland ◽  
Mukta Prasad ◽  
Rachel McDonnell
2015 ◽  
Vol 15 (02) ◽  
pp. 1540001
Author(s):  
Yejin Kim ◽  
Myunggyu Kim

This paper introduces a data-driven approach for human locomotion generation that takes as input a set of example locomotion clips and a motion path specified by an animator. Significantly, the approach only requires a single example of straight-path locomotion for each style expressed and can produce a continuous output sequence on an arbitrary path. Our approach considers quantitative and qualitative aspects of motion and suggests several techniques to synthesize a convincing output animation: motion path generation, interactive editing, and physical enhancement for the output animation. Initiated with an example clip, this process produces motion that differs stylistically from any in the example set, yet preserves the high quality of the example motion. As shown in the experimental results, our approach provides efficient locomotion generation by editing motion capture clips, especially for a novice animator, at interactive speed.


2012 ◽  
Author(s):  
Michael Ghil ◽  
Mickael D. Chekroun ◽  
Dmitri Kondrashov ◽  
Michael K. Tippett ◽  
Andrew Robertson ◽  
...  

Author(s):  
Ernest Pusateri ◽  
Bharat Ram Ambati ◽  
Elizabeth Brooks ◽  
Ondrej Platek ◽  
Donald McAllaster ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (5) ◽  
pp. 1571 ◽  
Author(s):  
Jhonatan Camacho Navarro ◽  
Magda Ruiz ◽  
Rodolfo Villamizar ◽  
Luis Mujica ◽  
Jabid Quiroga

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiangxu Li ◽  
Jiaxi Liu ◽  
Stanley A. Baronett ◽  
Mingfeng Liu ◽  
Lei Wang ◽  
...  

AbstractThe discovery of topological quantum states marks a new chapter in both condensed matter physics and materials sciences. By analogy to spin electronic system, topological concepts have been extended into phonons, boosting the birth of topological phononics (TPs). Here, we present a high-throughput screening and data-driven approach to compute and evaluate TPs among over 10,000 real materials. We have discovered 5014 TP materials and grouped them into two main classes of Weyl and nodal-line (ring) TPs. We have clarified the physical mechanism for the occurrence of single Weyl, high degenerate Weyl, individual nodal-line (ring), nodal-link, nodal-chain, and nodal-net TPs in various materials and their mutual correlations. Among the phononic systems, we have predicted the hourglass nodal net TPs in TeO3, as well as the clean and single type-I Weyl TPs between the acoustic and optical branches in half-Heusler LiCaAs. In addition, we found that different types of TPs can coexist in many materials (such as ScZn). Their potential applications and experimental detections have been discussed. This work substantially increases the amount of TP materials, which enables an in-depth investigation of their structure-property relations and opens new avenues for future device design related to TPs.


Sign in / Sign up

Export Citation Format

Share Document