Robustness evaluation of real-time fuzzy logic control of the VGT and EGR on a diesel engine

Author(s):  
Li Cheng ◽  
William Wang ◽  
Abdel Aitouche ◽  
Zhijun Peng
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Arpit Jain ◽  
Abhinav Sharma ◽  
Vibhu Jately ◽  
Brian Azzopardi ◽  
Sushabhan Choudhury

2018 ◽  
Vol 10 (10) ◽  
pp. 99 ◽  
Author(s):  
Tien Tran

The marine main diesel engine rotational speed automatic control plays a significant role in determining the optimal main diesel engine speed under impacting on navigation environment conditions. In this article, the application of fuzzy logic control theory for main diesel engine speed control has been associated with Particle Swarm Optimization (PSO). Firstly, the controller is designed according to fuzzy logic control theory. Secondly, the fuzzy logic controller will be optimized by Particle Swarm Optimization (PSO) in order to obtain the optimal adjustment of the membership functions only. Finally, the fuzzy logic controller has been completely innovated by Particle Swarm Optimization algorithm. The study results will be represented under digital simulation form, as well as comparison between traditional fuzzy logic controller with fuzzy logic control–particle swarm optimization speed controller being obtained.


Author(s):  
Feng Liu

The disorderly charging of large-scale electric vehicles will aggravate the peak-valley difference of the power grid, and affect the power quality and life of the transformer. The fuzzy logic control strategy for charging and discharging optimization of charging vehicles under the framework of fuzzy logic control from the perspective of the group is considered in this article. A real-time control method based on the clustering characteristics of the charging end time is proposed according to the different charging requirements of the connected electric vehicles and fuzzy logic control is adopted to solve the problem of optimal charging and discharging power of the entire cluster and a single electric vehicle. A fuzzy logic control model considering the charging and discharging of electric vehicles is established orienting at minimize daily load fluctuations and control penalties in the upper layer. The charging and discharging cost of electric vehicle owners is considered to solve the optimal control problem of the charging and discharging power of a single electric vehicle. Taking the data of the typical regional distribution network load as an example, it is verified that the real-time charging optimization strategy under fuzzy logic control through simulation can ensure the reliable operation of the power grid while considering the interests of all parties.


Energies ◽  
2018 ◽  
Vol 11 (5) ◽  
pp. 1122 ◽  
Author(s):  
Muhammad Umair Ali ◽  
Sarvar Hussain Nengroo ◽  
Muhamad Adil Khan ◽  
Kamran Zeb ◽  
Muhammad Ahmad Kamran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document