Model-Based Design and Processor-In-the-Loop Validation of a Model Predictive Control for Coupled Longitudinal-Lateral Vehicle Dynamics of Connected and Automated Vehicles

Author(s):  
Enrico Landolfi ◽  
Alessandro Salvi ◽  
Alfredo Troiano ◽  
Ciro Natale
2021 ◽  
Author(s):  
Giorgio Riva ◽  
Luca Mozzarelli ◽  
Matteo Corno ◽  
Simone Formentin ◽  
Sergio M. Savaresi

Abstract State of the art vehicle dynamics control systems do not exploit tire road forces information, even though the vehicle behaviour is ultimately determined by the tire road interaction. Recent technological improvements allow to accurately measure and estimate these variables, making it possible to introduce such knowledge inside a control system. In this paper, a vehicle dynamics control architecture based on a direct longitudinal tire force feedback is proposed. The scheme is made by a nested architecture composed by an outer Model Predictive Control algorithm, written in spatial coordinates, and an inner longitudinal force feedback controller. The latter is composed by four classical Proportional-Integral controllers in anti-windup configuration, endowed with a suitably designed gain switching logic to cope with possible unfeasible references provided by the outer loop, avoiding instability. The proposed scheme is tested in simulation in a challenging scenario where the tracking of a spiral path on a slippery surface and the timing performance are handled simultaneously by the controller. The performance is compared with that of an inner slip-based controller, sharing the same outer Model Predictive Control loop. The results show comparable performance in presence of unfeasible force references, while higher robustness is achieved with respect to friction curve uncertainties.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 128233-128249
Author(s):  
Mohammad Rokonuzzaman ◽  
Navid Mohajer ◽  
Saeid Nahavandi ◽  
Shady Mohamed

Author(s):  
M P R Prasad

This paper considers kinematics and dynamics of Remotely Operated Underwater Vehicle (ROV) to control position, orientation and velocity of the vehicle. Cascade control technique has been applied in this paper. The pole placement technique is used in inner loop of kinematics to stabilize the vehicle motions. Model Predictive control is proposed and applied in outer loop of vehicle dynamics to maintain position and velocity trajectories of ROV. Simulation results carried out on ROV shows the good performance and stability are achieved by using MPC algorithm, whereas sliding mode control loses its stability when ocean currents are high. Implementation of proposed MPC algorithm and stabilization of vehicle motions is the main contribution in this paper.


Author(s):  
Jiechao Liu ◽  
Paramsothy Jayakumar ◽  
James L. Overholt ◽  
Jeffrey L. Stein ◽  
Tulga Ersal

Unmanned ground vehicles (UGVs) are gaining importance and finding increased utility in both military and commercial applications. Although earlier UGV platforms were typically exclusively small ground robots, recent efforts started targeting passenger vehicle and larger size platforms. Due to their size and speed, these platforms have significantly different dynamics than small robots, and therefore the existing hazard avoidance algorithms, which were developed for small robots, may not deliver the desired performance. The goal of this paper is to present the first steps towards a model predictive control (MPC) based hazard avoidance algorithm for large UGVs that accounts for the vehicle dynamics through high fidelity models and uses only local information about the environment as provided by the onboard sensors. Specifically, the paper presents the MPC formulation for hazard avoidance using a light detection and ranging (LIDAR) sensor and applies it to a case study to investigate the impact of model fidelity on the performance of the algorithm, where performance is measured mainly by the time to reach the target point. Towards this end, the case study compares a 2 degrees-of-freedom (DoF) vehicle dynamics representation to a 14 DoF representation as the model used in MPC. The results show that the 2 DoF model can perform comparable to the 14 DoF model if the safe steering range is established using the 14 DoF model rather than the 2 DoF model itself. The conclusion is that high fidelity models are needed to push autonomous vehicles to their limits to increase their performance, but simulating the high fidelity models online within the MPC may not be as critical as using them to establish the safe control input limits.


Sign in / Sign up

Export Citation Format

Share Document