vehicle dynamics control
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 24)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
Jing Miao ◽  
Yifan Dai ◽  
Ou Xie ◽  
Hao Chen ◽  
Fuzhou Niu ◽  
...  

Recently, more and more research has been conducted to develop Connected Autonomous Vehicles (CAVs) applications that ensures the safety driving of CAVs under some extreme situations. This brief presents a robust control strategy for CAVs to preserve a precise tracking performance and maintain the stability of lateral dynamics when passing a sharp curve with uncertain road friction coefficient changes. In the proposed robust lateral dynamics control, robust optimization-based lateral dynamics controller is designed to achieve the stability of the lateral dynamics with the consideration of the road friction coefficient uncertainty. Simulation validations are carried out to evaluate the proposed control strategy. The results show that the robust optimization-based lateral dynamics can improve the robustness even with the uncertainty of the road friction coefficient.


2021 ◽  
Author(s):  
Simon Goltz ◽  
Daniel L. Ossig ◽  
Weixin Fu ◽  
Oliver Sawodny

2021 ◽  
Author(s):  
Giorgio Riva ◽  
Luca Mozzarelli ◽  
Matteo Corno ◽  
Simone Formentin ◽  
Sergio M. Savaresi

Abstract State of the art vehicle dynamics control systems do not exploit tire road forces information, even though the vehicle behaviour is ultimately determined by the tire road interaction. Recent technological improvements allow to accurately measure and estimate these variables, making it possible to introduce such knowledge inside a control system. In this paper, a vehicle dynamics control architecture based on a direct longitudinal tire force feedback is proposed. The scheme is made by a nested architecture composed by an outer Model Predictive Control algorithm, written in spatial coordinates, and an inner longitudinal force feedback controller. The latter is composed by four classical Proportional-Integral controllers in anti-windup configuration, endowed with a suitably designed gain switching logic to cope with possible unfeasible references provided by the outer loop, avoiding instability. The proposed scheme is tested in simulation in a challenging scenario where the tracking of a spiral path on a slippery surface and the timing performance are handled simultaneously by the controller. The performance is compared with that of an inner slip-based controller, sharing the same outer Model Predictive Control loop. The results show comparable performance in presence of unfeasible force references, while higher robustness is achieved with respect to friction curve uncertainties.


2021 ◽  
Vol 11 (10) ◽  
pp. 4687
Author(s):  
Philipp Maximilian Sieberg ◽  
Dieter Schramm

Considering automated driving, vehicle dynamics control systems are also a crucial aspect. Vehicle dynamics control systems serve as an important influence factor on safety and ride comfort. By reducing the driver’s responsibility through partially or fully automated driving functions, the occupants’ perception of safety and ride comfort changes. Both aspects are focused even more and have to be enhanced. In general, research on vehicle dynamics control systems is a field that has already been well researched. With regard to the mentioned aspects, however, a central control structure features sufficient potential by exploiting synergies. Furthermore, a predictive mode of operation can contribute to achieve these objectives, since the vehicle can act in a predictive manner instead of merely reacting. Consequently, this contribution presents a central predictive control system by means of a non-linear model-based predictive control algorithm. In this context, roll, self-steering and pitch behavior are considered as control objectives. The active roll stabilization demonstrates an excellent control quality with a root mean squared error of 7.6953×10−3 rad averaged over both validation maneuvers. Compared to a vehicle utilizing a conventional control approach combined with a skyhook damping, pitching movements are reduced by 19.75%. Furthermore, an understeering behavior is maintained, which corresponds to the self-steering behavior of the passive vehicle. In general, the central predictive control, thus, increases both ride comfort and safety in a holistic way.


Sign in / Sign up

Export Citation Format

Share Document