Voltage regulation through optimal reactive power dispatching in active distribution networks

Author(s):  
Stefania Conti ◽  
Andrea Maria Greco
Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5789
Author(s):  
Xiaohui Ge ◽  
Lu Shen ◽  
Chaoming Zheng ◽  
Peng Li ◽  
Xiaobo Dou

With the increasing penetration of distributed photovoltaics (PVs) in active distribution networks (ADNs), the risk of voltage violations caused by PV uncertainties is significantly exacerbated. Since the conventional voltage regulation strategy is limited by its discrete devices and delay, ADN operators allow PVs to participate in voltage optimization by controlling their power outputs and cooperating with traditional regulation devices. This paper proposes a decoupling rolling multi-period reactive power and voltage optimization strategy considering the strong time coupling between different devices. The mixed-integer voltage optimization model is first decomposed into a long-period master problem for on-load tap changer (OLTC) and multiple short-period subproblems for PV power by Benders decomposition algorithm. Then, based on the high-precision PV and load forecasts, the model predictive control (MPC) method is utilized to modify the independent subproblems into a series of subproblems that roll with the time window, achieving a smooth transition from the current state to the ideal state. The estimated voltage variation in the prediction horizon of MPC is calculated by a simplified discrete equation for OLTC tap and a linearized sensitivity matrix between power and voltage for fast computation. The feasibility of the proposed optimization strategy is demonstrated by performing simulations on a distribution test system.


2020 ◽  
Vol 12 (22) ◽  
pp. 9453
Author(s):  
Ruonan Hu ◽  
Wei Wang ◽  
Zhe Chen ◽  
Xuezhi Wu ◽  
Long Jing ◽  
...  

This paper proposes a coordinated voltage regulation method for active distribution networks (ADNs) to mitigate nodal voltage fluctuations caused by photovoltaic (PV) power fluctuations, where a three-stage optimization scheme is developed to coordinate and optimize the tap position of on-load tap changers (OLTCs), the reactive power of capacitor banks (CBs), and the active and reactive power of soft open points (SOPs). The first stage aims to schedule the OLTC and CBs hourly using the rolling optimization algorithm. In the second stage, a multi-objective optimization model of SOPs is established to periodically (15 min) optimize the active and reactive power of each SOP. Meanwhile, this model is also responsible for optimizing the Q-V droop control parameters of each SOP used in the third stage. The aim of the third stage is to suppress real-time (1 min) voltage fluctuations caused by rapid changes in PV power, where the Q-V droop control is developed to regulate the actual reactive power of SOPs automatically, according to the measured voltage at the SOPs’ connection points. Furthermore, numerous simulations and comparisons are carried out on a modified IEEE 33-bus distribution network to verify the effectiveness and correctness of the proposed voltage regulation method.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1121
Author(s):  
Rozmysław Mieński ◽  
Przemysław Urbanek ◽  
Irena Wasiak

The paper includes the analysis of the operation of low-voltage prosumer installation consisting of receivers and electricity sources and equipped with a 3-phase energy storage system. The aim of the storage application is the management of active power within the installation to decrease the total power exchanged with the supplying network and thus reduce energy costs borne by the prosumer. A solution for the effective implementation of the storage system is presented. Apart from the active power management performed according to the prosumer’s needs, the storage inverter provides the ancillary service of voltage regulation in the network according to the requirements of the network operator. A control strategy involving algorithms for voltage regulation without prejudice to the prosumer’s interest is described in the paper. Reactive power is used first as a control signal and if the required voltage effect cannot be reached, then the active power in the controlled phase is additionally changed and the Energy Storage System (ESS) loading is redistributed in phases in such a way that the total active power set by the prosumer program remains unchanged. The efficiency of the control strategy was tested by means of a simulation model in the PSCAD/EMTDC program. The results of the simulations are presented.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2173
Author(s):  
Álvaro Rodríguez del Nozal ◽  
Esther Romero-Ramos ◽  
Ángel Luis Trigo-García

Voltage control in active distribution networks must adapt to the unbalanced nature of most of these systems, and this requirement becomes even more apparent at low voltage levels. The use of transformers with on-load tap changers is gaining popularity, and those that allow different tap positions for each of the three phases of the transformer are the most promising. This work tackles the exact approach to the voltage optimization problem of active low-voltage networks when transformers with on-load tap changers are available. A very rigorous approach to the electrical model of all the involved components is used, and common approaches proposed in the literature are avoided. The main aim of the paper is twofold: to demonstrate the importance of being very rigorous in the electrical modeling of all the components to operate in a secure and effective way and to show the greater effectiveness of the decoupled on-load tap changer over the usual on-load tap changer in the voltage regulation problem. A low-voltage benchmark network under different load and distributed generation scenarios is tested with the proposed exact optimal solution to demonstrate its feasibility.


2018 ◽  
Vol 7 (2.28) ◽  
pp. 362
Author(s):  
Raed A. Shalwala

One of the most important operational requirements for any electrical power network for both distribution and transmission level is voltage control. Many studies have been carried out to improve or develop new voltage control techniques to facilitate safe connection of distributed generation. In Saudi Arabia, due to environmental, economic and development perspectives, a wide integration of photovoltaic (PV) genera-tion in distribution network is expected in the near future. This development in the network may cause voltage regulation problems due to the interaction with the existing conventional control system. In a previous paper, a control system has been described using a fuzzy logic control to set the on-line tap changer for the primary substation. In this paper a new control system is proposed for controlling the power factor of individual PV invertors based on observed correlation between net active and reactive power at each connection. A fuzzy logic control has been designed to alter the power factor for the remote invertors from the secondary substation to keep the feeder voltage within the permissible limits. In order to confirm the validity of the proposed method, simulations are carried out for a realistic distribution network with real data for load and solar radiation. Results showing the performance of the new control method are presented and discussed.  


Sign in / Sign up

Export Citation Format

Share Document