Electromagnetic transients due to lightning strikes on wind turbines: A case study

Author(s):  
R. B. Rodrigues ◽  
V. M. F. Mendes ◽  
J. P. S. Catalao
2021 ◽  
Vol 9 (5) ◽  
pp. 543
Author(s):  
Jiawen Li ◽  
Jingyu Bian ◽  
Yuxiang Ma ◽  
Yichen Jiang

A typhoon is a restrictive factor in the development of floating wind power in China. However, the influences of multistage typhoon wind and waves on offshore wind turbines have not yet been studied. Based on Typhoon Mangkhut, in this study, the characteristics of the motion response and structural loads of an offshore wind turbine are investigated during the travel process. For this purpose, a framework is established and verified for investigating the typhoon-induced effects of offshore wind turbines, including a multistage typhoon wave field and a coupled dynamic model of offshore wind turbines. On this basis, the motion response and structural loads of different stages are calculated and analyzed systematically. The results show that the maximum response does not exactly correspond to the maximum wave or wind stage. Considering only the maximum wave height or wind speed may underestimate the motion response during the traveling process of the typhoon, which has problems in guiding the anti-typhoon design of offshore wind turbines. In addition, the coupling motion between the floating foundation and turbine should be considered in the safety evaluation of the floating offshore wind turbine under typhoon conditions.


Author(s):  
Alessandro Bianchini ◽  
Francesco Balduzzi ◽  
Giovanni Ferrara ◽  
Lorenzo Ferrari

The assessment of robust CFD techniques is casting new light on the aerodynamics of airfoils rotating around an axis orthogonal to flow direction, with particular reference to flow curvature effects and stall mechanisms. In particular, Darrieus wind turbines’ designers are taking profit from these new discovers to improve the aerodynamic design of the rotors, in view of an increase of the overall efficiency and a reduction of the structural stresses on the blades. A controversial design parameter for Darrieus turbines, especially in case of small-size rotors, is represented by the location of the blade-spoke connection along the chord. The most common solution is indeed to place the connection at approximately airfoil’s quarter chord, i.e. where the pressure center is commonly located for low incidence angles. In some cases, however, the blade is connected at middle chord due to symmetry or aesthetic reasons. In some small turbines, innovative designs have even disregarded this parameter. Even if one can argue that the blade connection point is about to have some aerodynamic effects on the turbine’s performance, the real impact of this important design parameter is often not fully understood. The present study makes use of extensive CFD simulations on a literature case study, using a NACA 0021 airfoil, to assess the influence of the blade-spoke connection point. In particular, the differences in terms of power coefficient curve of the turbine, optimal tip-speed ratio, torque profiles and stresses on the connection are analyzed and discussed. Detailed flow analyses are also shown for azimuthal positions of particular interest. Results on the selected case study showed that the middle-chord blade-spoke connection point seems to guarantee a higher performance of the rotor, even if additional solicitation is applied to the connection itself. It is further shown that the same performance can indeed be obtained with the airfoil attached at quarter chord and properly pitched. By doing so, the stresses are contained and the performance is maximized.


2015 ◽  
Vol 75 ◽  
pp. 697-703 ◽  
Author(s):  
Francesco Castellani ◽  
Davide Astolfi ◽  
Alberto Garinei ◽  
Stefania Proietti ◽  
Paolo Sdringola ◽  
...  

2020 ◽  
Vol 11 (7-2020) ◽  
pp. 66-72
Author(s):  
Liubov A. Belova ◽  

The earth-termination system for towers of ground-based wind turbines in addition to protective and functional grounding provides lightning protection grounding, which is especially important since the wind turbine is susceptible to lightning strikes. If insufficient protective measures are taken, the risk of damage to a wind turbine due to a lightning strike increases. Therefore, a well-thought-out built-in grounding system for wind turbine towers is needed, which would function as necessary and guarantee long-term mechanical strength and corrosion resistance. The configuration of grounding systems for wind turbines is discussed in IEC 61400-24, which deals with the topic of lightning protection for wind turbines, including detailed information on the choice of lightning protection measures and surge protection. It is advisable to create a lightning protection concept at the initial stage of planning a wind turbine in order to avoid later costly repairs and retrofitting.


Sign in / Sign up

Export Citation Format

Share Document