Non-contact Blood Pressure Estimation Using a 300 GHz Continuous Wave Radar and Machine Learning Models

Author(s):  
Marie Jung ◽  
Michael Caris ◽  
Stephan Stanko
2021 ◽  
Vol 60 (6) ◽  
pp. 5779-5796
Author(s):  
Nashat Maher ◽  
G.A. Elsheikh ◽  
W.R. Anis ◽  
Tamer Emara

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Malikeh Pour Ebrahim ◽  
Fatemeh Heydari ◽  
Taiyang Wu ◽  
Katherine Walker ◽  
Keith Joe ◽  
...  

Abstract The pulse arrival time (PAT), pre-ejection period (PEP) and pulse transit time (PTT) are calculated using on-body continuous wave radar (CWR), Photoplethysmogram (PPG) and Electrocardiogram (ECG) sensors for wearable continuous systolic blood pressure (SBP) measurements. The CWR and PPG sensors are placed on the sternum and left earlobe respectively. This paper presents a signal processing method based on wavelet transform and adaptive filtering to remove noise from CWR signals. Experimental data are collected from 43 subjects in various static postures and 26 subjects doing 6 different exercise tasks. Two mathematical models are used to calculate SBPs from PTTs/PATs. For 38 subjects participating in posture tasks, the best cumulative error percentage (CEP) is 92.28% and for 21 subjects participating in exercise tasks, the best CEP is 82.61%. The results show the proposed method is promising in estimating SBP using PTT. Additionally, removing PEP from PAT leads to improving results by around 9%. The CWR sensors present a low-power, continuous and potentially wearable system with minimal body contact to monitor aortic valve mechanical activities directly. Results of this study, of wearable radar sensors, demonstrate the potential superiority of CWR-based PEP extraction for various medical monitoring applications, including BP measurement.


2021 ◽  
Author(s):  
Michael Elgart ◽  
Genevieve Lyons ◽  
Santiago Romero-Brufau ◽  
Nuzulul Kurniansyah ◽  
Jennifer A Brody ◽  
...  

Polygenic risk scores (PRS) are commonly used to quantify the inherited susceptibility for a given trait. However, the standard PRS fail to account for non-linear and interaction effects between single nucleotide polymorphisms (SNPs). Machine learning algorithms can be used to account for such non-linearities and interactions. We trained and validated polygenic prediction models for five complex phenotypes in a multi-ancestry population: total cholesterol, triglycerides, systolic blood pressure, sleep duration, and height. We used an ensemble method of LASSO for feature selection and gradient boosted trees (XGBoost) for non-linearities and interaction effects. In an independent test set, we found that combining a standard PRS as a feature in the XGBoost model increases the percentage variance explained (PVE) of the prediction model compared to the standard PRS by 25% for sleep duration, 26% for height, 44% for systolic blood pressure, 64% for triglycerides, and 85% for total cholesterol. Machine learning models trained in specific racial/ethnic groups performed similarly in multi-ancestry trained models, despite smaller sample sizes. The predictions of the machine learning models were superior to the standard PRS in each of the racial/ethnic groups in our study. However, among Blacks the PVE was substantially lower than for other groups. For example, the PVE for total cholesterol was 8.1%, 12.9%, and 17.4% for Blacks, Whites, and Hispanics/Latinos, respectively. This work demonstrates an effective method to account for non-linearities and interaction effects in genetics-based prediction models.


2015 ◽  
Vol 42 (7) ◽  
pp. 3643-3652 ◽  
Author(s):  
Manjeevan Seera ◽  
Chee Peng Lim ◽  
Wei Shiung Liew ◽  
Einly Lim ◽  
Chu Kiong Loo

Sign in / Sign up

Export Citation Format

Share Document