Kirigami Structure with a Large Uniform Deformation Region

Author(s):  
Hiroki Taniyama ◽  
Eiji Iwase
Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 76
Author(s):  
Hiroki Taniyama ◽  
Eiji Iwase

We designed a kirigami structure with a particular shape at both ends to provide a large uniform deformation region when stretched. When a kirigami structure is stretched, non-deformation regions, where the regions’ cuts do not open, and non-uniform deformation regions, where the regions’ cuts are not uniformly deformed, are produced. The extent of the non-deformation and non-uniform deformation regions increases in proportion to the number of cut cycles in the width direction nw this reduces the percentage of the uniform deformation region. We propose a method that increases the uniform deformation region in a kirigami structure by deforming the shape of the ends from a rectangle to a trapezoid when stretched. The proposed kirigami structure has separation lines at both ends that separate cuts in the width direction, and the position of contacts at both ends are moved to the center. The proposed kirigami structure has a large uniform deformation region, even when nw is large, as evidenced by calculating the area of open cuts under stretching. The product of our study realizes a stretchable electro device with a large area, which maintains the position of evenly mounted functional elements when stretched.


Structures ◽  
2021 ◽  
Vol 31 ◽  
pp. 395-405
Author(s):  
Arsalan Alavi ◽  
Elena Mele ◽  
Reza Rahgozar ◽  
Ehsan Noroozinejad Farsangi ◽  
Izuru Takewaki ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2949
Author(s):  
Marzieh Rabiei ◽  
Arvydas Palevicius ◽  
Amir Dashti ◽  
Sohrab Nasiri ◽  
Ahmad Monshi ◽  
...  

Taking into account X-ray diffraction, one of the well-known methods for calculating the stress-strain of crystals is Williamson-Hall (W–H). The W-H method has three models, namely (1) Uniform deformation model (UDM); (2) Uniform stress deformation model (USDM); and (3) Uniform deformation energy density model (UDEDM). The USDM and UDEDM models are directly related to the modulus of elasticity (E). Young’s modulus is a key parameter in engineering design and materials development. Young’s modulus is considered in USDM and UDEDM models, but in all previous studies, researchers used the average values of Young’s modulus or they calculated Young’s modulus only for a sharp peak of an XRD pattern or they extracted Young’s modulus from the literature. Therefore, these values are not representative of all peaks derived from X-ray diffraction; as a result, these values are not estimated with high accuracy. Nevertheless, in the current study, the W-H method is used considering the all diffracted planes of the unit cell and super cells (2 × 2 × 2) of Hydroxyapatite (HA), and a new method with the high accuracy of the W-H method in the USDM model is presented to calculate stress (σ) and strain (ε). The accounting for the planar density of atoms is the novelty of this work. Furthermore, the ultrasonic pulse-echo test is performed for the validation of the novelty assumptions.


2000 ◽  
Vol 19 (2) ◽  
pp. 209-221 ◽  
Author(s):  
José-Valdemar Fernandes ◽  
Luis F. Menezes ◽  
Dulce M. Rodrigues ◽  
Bruno M. Chaparro ◽  
Manuel F. Vieira
Keyword(s):  

2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Sui Yaguang ◽  
Zhang Dezhi ◽  
Tang Shiying ◽  
Chen Bo

Cylindrical explosive loading has an important application in explosive working, researching on weapon damage, and explosive-driving load. This study uses experimental and numerical methods to study the response of long and thin tubes when subjected to cylindrical explosive loading. The flake-like charge and multipoint initiation technique were adopted to load cylindrical explosive waves. Experimental results showed that the method could produce uniform deformation in certain parts of the long tube, but partial spall injuries occurred after the explosion. The macroscopic and microscopic deformation of tubes were analyzed. Numerical simulations were conducted to investigate the detailed response of the tube subjected to a cylindrical explosive wave. The results indicate that the collision of explosive waves brought inconsistencies in pressure and velocity. The pressure and velocity in the collision region were significantly higher than those of other parts, which caused the collision region to be easily damaged.


2005 ◽  
Vol 482 ◽  
pp. 127-130 ◽  
Author(s):  
Yoshitaka Umeno ◽  
Takayuki Kitamura

The mechanical stability of a material is a fundamental issue in strength of atomic systems. Although the criterion of the mechanical stability of homogeneous structures such as perfect crystals have been successfully investigated so far, the criterion has not been able to be precisely evaluated in the cases of non-uniform deformations or bodies of inhomogeneous atomic structures. Now we present an instability criterion of an arbitrary atomic structure based on the energy balance of the whole system. This method gives the mathematically rigorous condition for the onset of an unstable deformation in any inhomogeneous atomic system. Furthermore, the method can be applied to any type of potential field, which means that ab initio evaluations of the mechanical instability of inhomogeneous structure under non-uniform deformation will be possible. The validity of the method is clarified by the application to tension of a cracked body. The onsets of unstable deformations and their deformation modes are precisely evaluated by the method.


1976 ◽  
Vol 98 (2) ◽  
pp. 438-445 ◽  
Author(s):  
B. Avitzur ◽  
W. C. Hahn ◽  
M. Mori

The upper bound approach is used to analyze combined backward-forward extrusion. The deformation region is divided into five zones separated by planer and cylindrical surfaces of velocity discontinuities. The internal power of deformation and shear and friction losses are computed individually and summed. The pseudo-independent process parameter is the backward rate of flow with respect to which the total power of deformation is optimized. The optimal backward rate of flow is assumed to be the actual one. Thus, the backward rate of flow becomes a dependent parameter to be studied through this analysis. Conditions covering backward rates of flow from zero to maximum are demonstrated graphically. Examples are given for which combined flow results and for which either only forward flow or only backward flow occur.


Sign in / Sign up

Export Citation Format

Share Document