Shock Protection Using Integrated Nonlinear Spring Shock Stops

Author(s):  
S.W. Yoon ◽  
N. Yazdi ◽  
J. Chae ◽  
N.C. Perkins ◽  
K. Najafi
2013 ◽  
Vol 26 (5) ◽  
pp. 892-899 ◽  
Author(s):  
Haitao Yu ◽  
Mantian Li ◽  
Hegao Cai
Keyword(s):  

2007 ◽  
Vol 51 (8) ◽  
pp. 2811-2819 ◽  
Author(s):  
Diptesh Sil ◽  
Anurupa Shrestha ◽  
Matthew R. Kimbrell ◽  
Thuan B. Nguyen ◽  
Ashok K. Adisechan ◽  
...  

ABSTRACT Lipopolysaccharide (LPS), or endotoxin, a structural component of gram-negative bacterial outer membranes, plays a key role in the pathogenesis of septic shock, a syndrome of severe systemic inflammation which leads to multiple-system organ failure. Despite advances in antimicrobial chemotherapy, sepsis continues to be the commonest cause of death in the critically ill patient. This is attributable to the lack of therapeutic options that aim at limiting the exposure to the toxin and the prevention of subsequent downstream inflammatory processes. Polymyxin B (PMB), a peptide antibiotic, is a prototype small molecule that binds and neutralizes LPS toxicity. However, the antibiotic is too toxic for systemic use as an LPS sequestrant. Based on a nuclear magnetic resonance-derived model of polymyxin B-LPS complex, we had earlier identified the pharmacophore necessary for optimal recognition and neutralization of the toxin. Iterative cycles of pharmacophore-based ligand design and evaluation have yielded a synthetically easily accessible N 1,mono-alkyl-mono-homologated spermine derivative, DS-96. We have found that DS-96 binds LPS and neutralizes its toxicity with a potency indistinguishable from that of PMB in a wide range of in vitro assays, affords complete protection in a murine model of LPS-induced lethality, and is apparently nontoxic in vertebrate animal models.


2013 ◽  
Vol 200 (6) ◽  
pp. 757-772 ◽  
Author(s):  
Andrew D. Stephens ◽  
Rachel A. Haggerty ◽  
Paula A. Vasquez ◽  
Leandra Vicci ◽  
Chloe E. Snider ◽  
...  

The mechanisms by which sister chromatids maintain biorientation on the metaphase spindle are critical to the fidelity of chromosome segregation. Active force interplay exists between predominantly extensional microtubule-based spindle forces and restoring forces from chromatin. These forces regulate tension at the kinetochore that silences the spindle assembly checkpoint to ensure faithful chromosome segregation. Depletion of pericentric cohesin or condensin has been shown to increase the mean and variance of spindle length, which have been attributed to a softening of the linear chromatin spring. Models of the spindle apparatus with linear chromatin springs that match spindle dynamics fail to predict the behavior of pericentromeric chromatin in wild-type and mutant spindles. We demonstrate that a nonlinear spring with a threshold extension to switch between spring states predicts asymmetric chromatin stretching observed in vivo. The addition of cross-links between adjacent springs recapitulates coordination between pericentromeres of neighboring chromosomes.


2014 ◽  
Vol 215 ◽  
pp. 36-43 ◽  
Author(s):  
A.K. Delahunty ◽  
W.T. Pike
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document